Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

New apex compatible squad #19

Merged
merged 2 commits into from
Apr 30, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion BingBertSquad/deepspeed_bsz24_config.json
Original file line number Diff line number Diff line change
Expand Up @@ -6,11 +6,11 @@
"type": "Adam",
"params": {
"lr": 3e-5,
"max_grad_norm": 1.0,
"weight_decay": 0.0,
"bias_correction": false
}
},
"gradient_clipping": 1.0,
"fp16": {
"enabled": true
}
Expand Down
63 changes: 46 additions & 17 deletions BingBertSquad/nvidia_run_squad_baseline.py
Original file line number Diff line number Diff line change
Expand Up @@ -42,6 +42,7 @@
from pytorch_pretrained_bert.optimization import BertAdam
from pytorch_pretrained_bert.file_utils import PYTORCH_PRETRAINED_BERT_CACHE

from apex import amp
from turing.nvidia_modeling import BertForQuestionAnswering, BertConfig

logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s',
Expand Down Expand Up @@ -712,6 +713,31 @@ def set_optimizer_params_grad(named_params_optimizer, named_params_model, test_n
return is_nan


from apex.multi_tensor_apply import multi_tensor_applier
class GradientClipper:
"""
Clips gradient norm of an iterable of parameters.
"""
def __init__(self, max_grad_norm):
self.max_norm = max_grad_norm
if multi_tensor_applier.available:
import amp_C
self._overflow_buf = torch.cuda.IntTensor([0])
self.multi_tensor_l2norm = amp_C.multi_tensor_l2norm
self.multi_tensor_scale = amp_C.multi_tensor_scale
else:
raise RuntimeError('Gradient clipping requires cuda extensions')

def step(self, parameters):
l = [p.grad for p in parameters if p.grad is not None]
total_norm, _ = multi_tensor_applier(self.multi_tensor_l2norm, self._overflow_buf, [l], False)
total_norm = total_norm.item()
if (total_norm == float('inf')): return
clip_coef = self.max_norm / (total_norm + 1e-6)
if clip_coef < 1:
multi_tensor_applier(self.multi_tensor_scale, self._overflow_buf, [l, l], clip_coef)


def main():
parser = get_argument_parser()
args = parser.parse_args()
Expand Down Expand Up @@ -813,18 +839,7 @@ def main():
#model.bert.load_state_dict(bert_state_dict, strict=False)
logger.info(f"Pretrained Bert Encoder Loaded from: {args.model_file}")

if args.fp16:
model.half()
model.to(device)
if args.local_rank != -1:
try:
from apex.parallel import DistributedDataParallel as DDP
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")

model = DDP(model)
elif n_gpu > 1:
model = torch.nn.DataParallel(model)

# Prepare optimizer
param_optimizer = list(model.named_parameters())
Expand All @@ -844,25 +859,33 @@ def main():
t_total = t_total // torch.distributed.get_world_size()
if args.fp16:
try:
from apex.optimizers import FP16_Optimizer
from apex.optimizers import FusedAdam
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")

optimizer = FusedAdam(optimizer_grouped_parameters,
lr=args.learning_rate,
bias_correction=False,
max_grad_norm=1.0)
bias_correction=False)
if args.loss_scale == 0:
optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
model, optimizer = amp.initialize(model, optimizer, opt_level="O2", keep_batchnorm_fp32=False, loss_scale="dynamic")
else:
optimizer = FP16_Optimizer(optimizer, static_loss_scale=args.loss_scale)
raise NotImplementedError("dynamic loss scale is only supported in baseline, please set loss_scale=0")
else:
optimizer = BertAdam(optimizer_grouped_parameters,
lr=args.learning_rate,
warmup=args.warmup_proportion,
t_total=t_total)

if args.local_rank != -1:
try:
from apex.parallel import DistributedDataParallel as DDP
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")

model = DDP(model)
elif n_gpu > 1:
model = torch.nn.DataParallel(model)

global_step = 0
if args.do_train:
cached_train_features_file = args.train_file+'_{0}_{1}_{2}_{3}'.format(
Expand Down Expand Up @@ -901,6 +924,8 @@ def main():
train_sampler = DistributedSampler(train_data)
train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size)

gradClipper = GradientClipper(max_grad_norm=1.0)

model.train()
ema_loss = 0.
sample_count = 0
Expand Down Expand Up @@ -928,10 +953,14 @@ def main():
model.enable_allreduce()

if args.fp16:
optimizer.backward(loss)
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
else:
loss.backward()

# gradient clipping
gradClipper.step(amp.master_params(optimizer))

sample_count += (args.train_batch_size * torch.distributed.get_world_size())

if (step + 1) % args.gradient_accumulation_steps == 0:
Expand Down