Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Use device_name instead of device index to support other device #3933

Merged
merged 4 commits into from
Jul 14, 2023
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
20 changes: 10 additions & 10 deletions deepspeed/runtime/zero/partition_parameters.py
Original file line number Diff line number Diff line change
Expand Up @@ -1043,30 +1043,30 @@ def all_gather_coalesced(params: Iterable[Parameter],
param_buffer = torch.empty(
buffer_size,
dtype=param.dtype if not quant else torch.int8,
device=get_accelerator().current_device(),
device=get_accelerator().current_device_name(),
requires_grad=False,
)
param_ds_tensor = param.ds_secondary_tensor if not forward and param.ds_secondary_tensor is not None else param.ds_tensor
if not quant:
handles = _dist_allgather_fn(
param_ds_tensor.to(get_accelerator().current_device()),
param_ds_tensor.to(get_accelerator().current_device_name()),
param_buffer,
ds_process_group,
)
param.data = param_buffer.narrow(0, 0, param.ds_numel).view(param.ds_shape).to(param.device)
return AllGatherHandle(handles, param)
else:
quantized_param, scales = self.quantizer_module.quantize(param_ds_tensor)
handle = _dist_allgather_fn(quantized_param.to(get_accelerator().current_device()), param_buffer,
ds_process_group)
handle = _dist_allgather_fn(quantized_param.to(get_accelerator().current_device_name()),
param_buffer, ds_process_group)

quant_scale_buffer = torch.empty(
scales.numel() * world_size,
dtype=torch.float32,
device=get_accelerator().current_device(),
device=get_accelerator().current_device_name(),
requires_grad=False,
)
quant_handle = _dist_allgather_fn(scales.to(get_accelerator().current_device()),
quant_handle = _dist_allgather_fn(scales.to(get_accelerator().current_device_name()),
quant_scale_buffer, ds_process_group)
quant_info = QuantizationInfo()

Expand All @@ -1086,7 +1086,7 @@ def all_gather_coalesced(params: Iterable[Parameter],
flat_tensor = torch.empty(partition_sz * world_size,
dtype=get_only_unique_item(p.dtype
for p in params) if not quant else torch.int8,
device=get_accelerator().current_device(),
device=get_accelerator().current_device_name(),
requires_grad=False)
if not quant:
partitions: List[Parameter] = []
Expand Down Expand Up @@ -1118,17 +1118,17 @@ def all_gather_coalesced(params: Iterable[Parameter],
use_secondary_tensor = True
quantized_param, scales = self.quantizer_module.quantize(
instrument_w_nvtx(torch.cat)(
[p.ds_secondary_tensor.to(get_accelerator().current_device()) for p in params]))
[p.ds_secondary_tensor.to(get_accelerator().current_device_name()) for p in params]))
else:
quantized_param, scales = self.quantizer_module.quantize(
instrument_w_nvtx(
torch.cat)([p.ds_tensor.to(get_accelerator().current_device()) for p in params]))
torch.cat)([p.ds_tensor.to(get_accelerator().current_device_name()) for p in params]))
handle = _dist_allgather_fn(quantized_param, flat_tensor, ds_process_group)
quant_info = QuantizationInfo()
quant_scale_buffer = torch.empty(
scales.numel() * world_size,
dtype=torch.float32,
device=get_accelerator().current_device(),
device=get_accelerator().current_device_name(),
requires_grad=False,
)
quant_handle = _dist_allgather_fn(scales, quant_scale_buffer, ds_process_group)
Expand Down