Skip to content

michiel98user/rice_classification

Repository files navigation

rice classification

A short description of the project.

Project Organization

├── README.md          <- The top-level README for developers using this project.
├── main.py            <- Script to run the entire pipeline
│
├── configs
│   ├── __init__.py    <- Makes configurations a Python module
│   └── config_files   <- Config files with credentials, API keys, etc., ignored by .gitignore
│   ├── parameters.py  <- Globally defined parameters used in src 
│   ├── names.py  <- Globally defined parameters used in src 
│   └── paths.py       <- Globally defined folder and file paths 
|
│
├── data
│   ├── external       <- Data from third party sources.
│   ├── interim        <- Intermediate data that has been transformed.
│   ├── processed      <- The final, canonical data sets for modeling.
│   └── raw            <- The original, immutable data dump.
│
├── logs               <- A folder containing .log files
│
├── logger.py          <- Definition of logger
│
├── models             <- Trained and serialized models, model predictions, or model summaries
│
├── notebooks          <- Jupyter notebooks. Naming convention is: the creator's initials,
│                         a number (for ordering), and a short `-` delimited description, e.g.
│                         `jqp-1.0-initial-data-exploration`.
│
├── reports            <- Generated analysis as HTML, PDF, LaTeX, etc.
│   └── figures        <- Generated graphics and figures to be used in reporting
│
├── setup.py           <- makes project pip installable (pip install -e .) so src can be imported
|
├── src                <- Source code for use in this project.
│   ├── __init__.py    <- Makes src a Python module
│   │
│   ├── data           <- Scripts to download or generate data
│   │   └── make_dataset.py
│   │
│   ├── features       <- Scripts to turn raw data into features for modeling
│   │   └── build_features.py
│   │
│   ├── models         <- Scripts to train models and then use trained models to make
│   │   │                 predictions
│   │   ├── predict_model.py
│   │   └── train_model.py
│   │
│   └── visualization  <- Scripts to create exploratory and results oriented visualizations
│       └── <>.py
│
├── tests
│   ├── __init.py__    <- Makes tests a Python module
│   └── test_basic.py  <- Basic pytest test
│
├── .gitignore         <- files to be ignored by git  


Installation

Set up a virtual environment via:

conda env create --file environment.yml

Activate the virtual environment:

conda activate env_ld_bp

Install the project and required packages in the activated virtual environment via:

python -m pip install -U pip setuptools wheel
python -m pip install -e ".[dev]"
pre-commit install

Base Example

Base example of how to use this project.

Documentation

Link to the documentation page.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published