-
Notifications
You must be signed in to change notification settings - Fork 14
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
3 additions
and
11 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,13 +1,5 @@ | ||
Welcome! | ||
These pages are a compilation of lecture notes for my Introduction to GIS and Spatial Analysis course (ES214). They are ordered in such a way to follow the course outline, but most pages can be read in any desirable order. The course (and this book) is split into two parts: data manipulation & visualization and exploratory spatial data analysis. The first part of this book is usually conducted using ArcGIS Desktop whereas the latter part of the book is conducted in R. ArcGIS was chosen as the GIS data manipulation environment because of its “desirability” in job applications for undergraduates in the Unites States. But other GIS software environments, such as the open source software QGIS, could easily be adopted in lieu of ArcGIS–even R can be used to perform many spatial data manipulations such as clipping, buffering and projecting. Even though some of the chapters of this book make direct reference to ArcGIS techniques, most chapters can be studied without access to the software. | ||
|
||
This is a minimal example of a book based on R Markdown and **bookdown** (https://github.com/rstudio/bookdown). | ||
The latter part of this book (and the course) make heavy use of R because of a) its broad appeal in the world of data analysis b) its rich (if not richest) array of spatial analysis and spatial statistics packages c) its scripting environment (which facilitates reproducibility) d) and its very cheap cost (it’s completely free and open source!). But R can be used for many traditional “GIS” application that involve most data manipulation operations–the only benefit in using a full-blown GIS environment like ArcGIS or QGIS is in creating/editing spatial data, rendering complex maps and manipulating spatial data. | ||
|
||
This template provides a skeleton file structure that you can edit to create your book. | ||
|
||
The contents inside the .Rmd files provide some pointers to help you get started, but feel free to also delete the content in each file and start fresh. | ||
|
||
Additional resources: | ||
|
||
The **bookdown** book: https://bookdown.org/yihui/bookdown/ | ||
|
||
The **bookdown** package reference site: https://pkgs.rstudio.com/bookdown | ||
The Appendix covers various aspects of spatial data manipulation and analysis using R. The course only focuses on point pattern analysis and spatial autocorrelation using R, but I’ve added other R resources for students wishing to expand their GIS skills using R. |