Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merge alg-dev into main ahead of release #171

Merged
merged 3 commits into from
Jul 5, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions examples/models/isotropic_fluorescent_thick_3d.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,13 +6,13 @@
# Parameters
# all lengths must use consistent units e.g. um
simulation_arguments = {
"zyx_shape": (100, 256, 256),
"zyx_shape": (200, 256, 256),
"yx_pixel_size": 6.5 / 63,
"z_pixel_size": 0.25,
}
phantom_arguments = {"sphere_radius": 5}
transfer_function_arguments = {
"wavelength_illumination": 0.532,
"wavelength_emission": 0.532,
"z_padding": 0,
"index_of_refraction_media": 1.3,
"numerical_aperture_detection": 1.2,
Expand Down
5 changes: 2 additions & 3 deletions examples/models/phase_thick_3d.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,12 +14,12 @@
"zyx_shape": (100, 256, 256),
"yx_pixel_size": 6.5 / 63,
"z_pixel_size": 0.25,
"wavelength_illumination": 0.532,
"index_of_refraction_media": 1.3,
}
phantom_arguments = {"index_of_refraction_sample": 1.50, "sphere_radius": 5}
transfer_function_arguments = {
"z_padding": 0,
"wavelength_illumination": 0.532,
"numerical_aperture_illumination": 0.9,
"numerical_aperture_detection": 1.2,
}
Expand Down Expand Up @@ -61,6 +61,7 @@
zyx_phase,
real_potential_transfer_function,
transfer_function_arguments["z_padding"],
brightness=1e3,
)

# Reconstruct
Expand All @@ -69,8 +70,6 @@
real_potential_transfer_function,
imag_potential_transfer_function,
transfer_function_arguments["z_padding"],
simulation_arguments["z_pixel_size"],
simulation_arguments["wavelength_illumination"],
)

# Display
Expand Down
81 changes: 80 additions & 1 deletion tests/models/test_phase_thick_3d.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
import pytest

import numpy as np
from waveorder.models import phase_thick_3d


Expand All @@ -20,3 +20,82 @@ def test_calculate_transfer_function(invert_phase_contrast):

assert H_re.shape == (20 + 2 * z_padding, 100, 101)
assert H_im.shape == (20 + 2 * z_padding, 100, 101)


# Helper function for testing reconstruction invariances
def simulate_phase_recon(
z_pixel_size_um=0.1,
yx_pixel_size_um=6.5 / 63,
):

z_fov_um = 50
yx_fov_um = 50

n_z = np.int32(z_fov_um / z_pixel_size_um)
n_yx = np.int32(yx_fov_um / yx_pixel_size_um)

# Parameters
# all lengths must use consistent units e.g. um
simulation_arguments = {
"zyx_shape": (n_z, n_yx, n_yx),
"yx_pixel_size": yx_pixel_size_um,
"z_pixel_size": z_pixel_size_um,
"index_of_refraction_media": 1.3,
}
phantom_arguments = {
"index_of_refraction_sample": 1.40,
"sphere_radius": 5,
}
transfer_function_arguments = {
"z_padding": 0,
"wavelength_illumination": 0.532,
"numerical_aperture_illumination": 0.9,
"numerical_aperture_detection": 1.3,
}

# Create a phantom
zyx_phase = phase_thick_3d.generate_test_phantom(
**simulation_arguments, **phantom_arguments
)

# Calculate transfer function
(
real_potential_transfer_function,
imag_potential_transfer_function,
) = phase_thick_3d.calculate_transfer_function(
**simulation_arguments, **transfer_function_arguments
)

# Simulate
zyx_data = phase_thick_3d.apply_transfer_function(
zyx_phase,
real_potential_transfer_function,
transfer_function_arguments["z_padding"],
brightness=1000,
)

# Reconstruct
zyx_recon = phase_thick_3d.apply_inverse_transfer_function(
zyx_data,
real_potential_transfer_function,
imag_potential_transfer_function,
transfer_function_arguments["z_padding"],
regularization_strength=1e-3,
)

Z, Y, X = zyx_phase.shape
recon_center = zyx_recon[Z // 2, Y // 2, X // 2].numpy()

return recon_center


def test_phase_invariance():
recon = simulate_phase_recon()

# test z pixel size invariance
recon1 = simulate_phase_recon(z_pixel_size_um=0.3)
assert np.abs((recon1 - recon) / recon) < 0.02

# test yx pixel size invariance
recon2 = simulate_phase_recon(yx_pixel_size_um=0.7 * 6.5 / 63)
assert np.abs((recon2 - recon) / recon) < 0.02
21 changes: 19 additions & 2 deletions waveorder/models/isotropic_fluorescent_thick_3d.py
Original file line number Diff line number Diff line change
Expand Up @@ -81,7 +81,24 @@ def visualize_transfer_function(viewer, optical_transfer_function, zyx_scale):
viewer.dims.order = (0, 1, 2)


def apply_transfer_function(zyx_object, optical_transfer_function, z_padding):
def apply_transfer_function(
zyx_object, optical_transfer_function, z_padding, background=10
):
"""Simulate imaging by applying a transfer function

Parameters
----------
zyx_object : torch.Tensor
optical_transfer_function : torch.Tensor
z_padding : int
background : int, optional
constant background counts added to each voxel, by default 10

Returns
-------
Simulated data : torch.Tensor

"""
if (
zyx_object.shape[0] + 2 * z_padding
!= optical_transfer_function.shape[0]
Expand All @@ -99,7 +116,7 @@ def apply_transfer_function(zyx_object, optical_transfer_function, z_padding):
zyx_data = zyx_obj_hat * optical_transfer_function
data = torch.real(torch.fft.ifftn(zyx_data))

data += 10 # Add a direct background
data += background # Add a direct background
return data


Expand Down
35 changes: 14 additions & 21 deletions waveorder/models/phase_thick_3d.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,6 @@ def generate_test_phantom(
zyx_shape,
yx_pixel_size,
z_pixel_size,
wavelength_illumination,
index_of_refraction_media,
index_of_refraction_sample,
sphere_radius,
Expand All @@ -24,12 +23,9 @@ def generate_test_phantom(
radius=sphere_radius,
blur_size=2 * yx_pixel_size,
)
zyx_phase = (
sphere
* (index_of_refraction_sample - index_of_refraction_media)
* z_pixel_size
/ wavelength_illumination
) # phase in radians
zyx_phase = sphere * (
index_of_refraction_sample - index_of_refraction_media
) # refractive index increment

return zyx_phase

Expand Down Expand Up @@ -120,12 +116,19 @@ def visualize_transfer_function(


def apply_transfer_function(
zyx_object, real_potential_transfer_function, z_padding
zyx_object, real_potential_transfer_function, z_padding, brightness
):
# This simplified forward model only handles phase, so it resuses the fluorescence forward model
# TODO: extend to absorption
return isotropic_fluorescent_thick_3d.apply_transfer_function(
zyx_object, real_potential_transfer_function, z_padding
return (
isotropic_fluorescent_thick_3d.apply_transfer_function(
zyx_object,
real_potential_transfer_function,
z_padding,
background=0,
)
* brightness
+ brightness
)


Expand All @@ -134,8 +137,6 @@ def apply_inverse_transfer_function(
real_potential_transfer_function: Tensor,
imaginary_potential_transfer_function: Tensor,
z_padding: int,
z_pixel_size: float, # TODO: MOVE THIS PARAM TO OTF? (leaky param)
wavelength_illumination: float, # TOOD: MOVE THIS PARAM TO OTF? (leaky param)
absorption_ratio: float = 0.0,
reconstruction_algorithm: Literal["Tikhonov", "TV"] = "Tikhonov",
regularization_strength: float = 1e-3,
Expand All @@ -158,14 +159,6 @@ def apply_inverse_transfer_function(
z_padding : int
Padding for axial dimension. Use zero for defocus stacks that
extend ~3 PSF widths beyond the sample. Pad by ~3 PSF widths otherwise.
z_pixel_size : float
spacing between axial samples in sample space
units must be consistent with wavelength_illumination
TODO: move this leaky parameter to calculate_transfer_function
wavelength_illumination : float,
illumination wavelength
units must be consistent with z_pixel_size
TODO: move this leaky parameter to calculate_transfer_function
absorption_ratio : float, optional,
Absorption-to-phase ratio in the sample.
Use default 0 for purely phase objects.
Expand Down Expand Up @@ -223,4 +216,4 @@ def apply_inverse_transfer_function(
if z_padding != 0:
f_real = f_real[z_padding:-z_padding]

return f_real * z_pixel_size / 4 / np.pi * wavelength_illumination
return f_real
16 changes: 10 additions & 6 deletions waveorder/optics.py
Original file line number Diff line number Diff line change
Expand Up @@ -270,7 +270,7 @@ def Source_subsample(Source_cont, NAx_coord, NAy_coord, subsampled_NA=0.1):
illu_list.append(i)
first_idx = False
elif (
np.product(
np.prod(
(NAx_list[i] - NAx_list[illu_list]) ** 2
+ (NAy_list[i] - NAy_list[illu_list]) ** 2
>= subsampled_NA**2
Expand Down Expand Up @@ -739,19 +739,23 @@ def compute_weak_object_transfer_function_3D(

H1 = torch.fft.ifft2(torch.conj(SPHz_hat) * PG_hat, dim=(1, 2))
H1 = H1 * window[:, None, None]
H1 = torch.fft.fft(H1, dim=0) * z_pixel_size
H1 = torch.fft.fft(H1, dim=0)

H2 = torch.fft.ifft2(SPHz_hat * torch.conj(PG_hat), dim=(1, 2))
H2 = H2 * window[:, None, None]
H2 = torch.fft.fft(H2, dim=0) * z_pixel_size
H2 = torch.fft.fft(H2, dim=0)

I_norm = torch.sum(
direct_intensity = torch.sum(
illumination_pupil_support
* detection_pupil
* torch.conj(detection_pupil)
)
real_potential_transfer_function = (H1 + H2) / I_norm
imag_potential_transfer_function = 1j * (H1 - H2) / I_norm
real_potential_transfer_function = (H1 + H2) / direct_intensity
imag_potential_transfer_function = 1j * (H1 - H2) / direct_intensity

# Discretization factor for unitless input and output
real_potential_transfer_function *= z_pixel_size
imag_potential_transfer_function *= z_pixel_size

return real_potential_transfer_function, imag_potential_transfer_function

Expand Down
Loading