-
Notifications
You must be signed in to change notification settings - Fork 4
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
dca4769
commit 885e05e
Showing
1 changed file
with
83 additions
and
75 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,121 +1,129 @@ | ||
# %% | ||
import napari | ||
from napari.experimental import link_layers | ||
import numpy as np | ||
import torch | ||
import os | ||
from waveorder import util, optics | ||
from waveorder.visuals.matplotlib_visuals import plot_5d_ortho | ||
from waveorder.visuals.utils import complex_tensor_to_rgb | ||
from scipy.ndimage import gaussian_filter | ||
|
||
output_folder = "2024-11-07" | ||
os.makedirs(output_folder, exist_ok=True) | ||
|
||
# Parameters | ||
# all lengths must use consistent units e.g. um | ||
N = 350 | ||
output_dirpath = "./greens_plots" | ||
grid_size = 100 | ||
blur_width = 2 | ||
zyx_shape = 3 * (N,) | ||
swing = 0.1 | ||
scheme = "5-State" | ||
zyx_shape = 3 * (grid_size,) | ||
yx_pixel_size = 6.5 / 63 | ||
z_pixel_size = 0.15 | ||
zyx_pixel_size = (z_pixel_size, yx_pixel_size, yx_pixel_size) | ||
wavelength_illumination = 0.532 | ||
z_padding = 0 | ||
index_of_refraction_media = 1.3 | ||
numerical_aperture_detection = 1.2 | ||
numerical_aperture_illumination = 0.01 | ||
|
||
input_jones = torch.tensor([0.0 - 1.0j, 1.0 + 0j]) # circular | ||
|
||
# Calculate frequencies | ||
y_frequencies, x_frequencies = util.generate_frequencies(zyx_shape[1:], yx_pixel_size) | ||
# Calculate coordinate grids | ||
zyx_pixel_size = (z_pixel_size, yx_pixel_size, yx_pixel_size) | ||
y_frequencies, x_frequencies = util.generate_frequencies( | ||
zyx_shape[1:], yx_pixel_size | ||
) | ||
radial_frequencies = torch.sqrt(x_frequencies**2 + y_frequencies**2) | ||
|
||
z_total = zyx_shape[0] + 2 * z_padding | ||
z_position_list = torch.fft.ifftshift( | ||
(torch.arange(z_total) - z_total // 2) * z_pixel_size | ||
) | ||
z_frequencies = torch.fft.fftfreq(z_total, d=z_pixel_size) | ||
|
||
|
||
G_3D = optics.generate_greens_tensor_spectrum( | ||
zyx_shape=(z_total, zyx_shape[1], zyx_shape[2]), | ||
zyx_pixel_size=(z_pixel_size, yx_pixel_size, yx_pixel_size), | ||
wavelength=wavelength_illumination / index_of_refraction_media, | ||
(torch.arange(zyx_shape[0]) - zyx_shape[0] // 2) * z_pixel_size | ||
) | ||
z_frequencies = torch.fft.fftfreq(zyx_shape[0], d=z_pixel_size) | ||
|
||
freq_shape = z_position_list.shape + x_frequencies.shape | ||
|
||
z_broadcast = torch.broadcast_to(z_frequencies[:, None, None], freq_shape) | ||
y_broadcast = torch.broadcast_to(y_frequencies[None, :, :], freq_shape) | ||
x_broadcast = torch.broadcast_to(x_frequencies[None, :, :], freq_shape) | ||
|
||
nu_rr = torch.sqrt(z_broadcast**2 + y_broadcast**2 + x_broadcast**2) | ||
|
||
freq_voxel_size = [1 / (d * n) for d, n in zip(zyx_pixel_size, zyx_shape)] | ||
|
||
# Calculate Greens tensor spectrum | ||
G_3D = optics.generate_greens_tensor_spectrum( | ||
zyx_shape=zyx_shape, | ||
zyx_pixel_size=zyx_pixel_size, | ||
wavelength=wavelength_illumination / index_of_refraction_media, | ||
) | ||
|
||
# Mask to zero outside of a spherical shell | ||
wavelength = wavelength_illumination / index_of_refraction_media | ||
nu_max = (33 / 32) / (wavelength) | ||
nu_min = (31 / 32) / (wavelength) | ||
|
||
mask = torch.logical_and(nu_rr < nu_max, nu_rr > nu_min) | ||
|
||
G_3D *= mask | ||
|
||
# Make plots | ||
voxel_size = [1 / (d * n) for d, n in zip(zyx_pixel_size, zyx_shape)] | ||
|
||
from waveorder.visuals.napari_visuals import add_transfer_function_to_viewer | ||
import napari | ||
|
||
v = napari.Viewer() | ||
# add_transfer_function_to_viewer( | ||
# v, G_3D, zyx_pixel_size, layer_name="G", complex_rgb=True | ||
# ) | ||
|
||
|
||
# Split into positve and negative imaginary parts | ||
G3D_imag = torch.imag(torch.fft.fftshift(G_3D, dim=(-3, -2, -1))) | ||
# G3D_imag[:, :, N // 2 :] = 0 # bottoms | ||
G3D_imag[:, :, : N // 2] = 0 # tops | ||
G_pos = G3D_imag * (G3D_imag > 0) | ||
G_neg = G3D_imag * (G3D_imag < 0) | ||
|
||
# Blur to reduce aliasing | ||
sigma = ( | ||
0, | ||
0, | ||
) + 3 * (blur_width,) | ||
G_pos = gaussian_filter(np.array(G_pos), sigma=sigma) | ||
G_neg = gaussian_filter(np.array(G_neg), sigma=sigma) | ||
|
||
v.add_image( | ||
-G_neg, | ||
colormap="I Purple", | ||
scale=voxel_size, | ||
contrast_limits=(0, 0.1), | ||
blending="minimum", | ||
rendering="mip", | ||
) | ||
v.add_image( | ||
G_pos, | ||
colormap="greens", | ||
scale=voxel_size, | ||
contrast_limits=(0, 0.1), | ||
blending="minimum", | ||
rendering="mip", | ||
# Add to napari | ||
viewer = napari.Viewer() | ||
|
||
settings = [ | ||
(slice(grid_size // 2, None), "botton", True), | ||
(slice(None, grid_size // 2), "top", False), | ||
] | ||
for my_slice, name, visible in settings: | ||
G_pos_copy = np.array(G_pos) | ||
G_neg_copy = np.array(G_neg) | ||
|
||
G_pos_copy[:, :, my_slice] = 0 | ||
G_neg_copy[:, :, my_slice] = 0 | ||
|
||
viewer.add_image( | ||
-G_neg_copy, | ||
colormap="I Purple", | ||
scale=freq_voxel_size, | ||
contrast_limits=(0, 0.1), | ||
blending="minimum", | ||
rendering="mip", | ||
name=name + "-negative", | ||
visible=visible, | ||
) | ||
viewer.add_image( | ||
G_pos_copy, | ||
colormap="greens", | ||
scale=freq_voxel_size, | ||
contrast_limits=(0, 0.1), | ||
blending="minimum", | ||
rendering="mip", | ||
name=name + "-positive", | ||
visible=visible, | ||
) | ||
link_layers(viewer.layers[-2:]) | ||
|
||
viewer.theme = "light" | ||
viewer.dims.ndisplay = 3 | ||
viewer.camera.set_view_direction( | ||
view_direction=[1, 1, 1], up_direction=[1, 0, 0] | ||
) | ||
viewer.camera.zoom = 100 | ||
|
||
input("Press <enter> to save screenshots...") | ||
|
||
# Save screenshots | ||
os.makedirs(output_dirpath, exist_ok=True) | ||
|
||
v.theme = "light" | ||
v.dims.ndisplay = 3 | ||
v.camera.set_view_direction(view_direction=[1, 1, 1], up_direction=[1, 0, 0]) | ||
v.camera.zoom = 100 | ||
|
||
# Create a new folder named | ||
folder = os.path.join(output_folder, "tops") #"bottoms") | ||
os.makedirs(folder, exist_ok=True) | ||
for i in range(3): | ||
for j in range(3): | ||
v.dims.current_step = (i, j, 0, 0, 0) | ||
v.screenshot(os.path.join(folder, f"{i}_{j}.png"), scale=2) | ||
def screenshots_to_folder(folder): | ||
out_folder = os.path.join(output_dirpath, folder) | ||
os.makedirs(out_folder, exist_ok=True) | ||
for i in range(3): | ||
for j in range(3): | ||
viewer.dims.current_step = (i, j, 0, 0, 0) | ||
viewer.screenshot( | ||
os.path.join(out_folder, f"{i}_{j}.png"), scale=2 | ||
) | ||
|
||
import pdb | ||
|
||
pdb.set_trace() | ||
screenshots_to_folder("bottoms") | ||
viewer.layers[0].visible = True | ||
viewer.layers[-1].visible = False | ||
screenshots_to_folder("tops") |