Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Rename UNeXt2 #84

Merged
merged 4 commits into from
Jun 11, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 3 additions & 3 deletions viscy/data/hcs.py
Original file line number Diff line number Diff line change
Expand Up @@ -263,7 +263,7 @@ class HCSDataModule(LightningDataModule):
by default 0.8
:param int batch_size: batch size, defaults to 16
:param int num_workers: number of data-loading workers, defaults to 8
:param Literal["2D", "2.1D", "2.2D", "2.5D", "3D"] architecture: U-Net architecture,
:param Literal["2D", "UNeXt2", "2.5D", "3D"] architecture: U-Net architecture,
defaults to "2.5D"
:param tuple[int, int] yx_patch_size: patch size in (Y, X),
defaults to (256, 256)
Expand All @@ -288,7 +288,7 @@ def __init__(
split_ratio: float = 0.8,
batch_size: int = 16,
num_workers: int = 8,
architecture: Literal["2D", "2.1D", "2.2D", "2.5D", "3D", "fcmae"] = "2.5D",
architecture: Literal["2D", "UNeXt2", "2.5D", "3D", "fcmae"] = "2.5D",
yx_patch_size: tuple[int, int] = (256, 256),
normalizations: list[MapTransform] = [],
augmentations: list[MapTransform] = [],
Expand All @@ -301,7 +301,7 @@ def __init__(
self.target_channel = _ensure_channel_list(target_channel)
self.batch_size = batch_size
self.num_workers = num_workers
self.target_2d = False if architecture in ["2.2D", "3D", "fcmae"] else True
self.target_2d = False if architecture in ["UNeXt2", "3D", "fcmae"] else True
self.z_window_size = z_window_size
self.split_ratio = split_ratio
self.yx_patch_size = yx_patch_size
Expand Down
6 changes: 3 additions & 3 deletions viscy/light/engine.py
Original file line number Diff line number Diff line change
Expand Up @@ -29,8 +29,8 @@
from viscy.evaluation.evaluation_metrics import mean_average_precision, ms_ssim_25d
from viscy.unet.networks.fcmae import FullyConvolutionalMAE
from viscy.unet.networks.Unet2D import Unet2d
from viscy.unet.networks.Unet22D import Unet22d
from viscy.unet.networks.Unet25D import Unet25d
from viscy.unet.networks.unext2 import UNeXt2

try:
from cellpose.models import CellposeModel
Expand All @@ -40,7 +40,7 @@

_UNET_ARCHITECTURE = {
"2D": Unet2d,
"2.2D": Unet22d,
"UNeXt2": UNeXt2,
"2.5D": Unet25d,
"fcmae": FullyConvolutionalMAE,
}
Expand Down Expand Up @@ -117,7 +117,7 @@ class VSUNet(LightningModule):

def __init__(
self,
architecture: Literal["2D", "2.1D", "2.2D", "2.5D", "3D", "fcmae"],
architecture: Literal["2D", "UNeXt2", "2.5D", "3D", "fcmae"],
model_config: dict = {},
loss_function: Union[nn.Module, MixedLoss] = None,
lr: float = 1e-3,
Expand Down
2 changes: 1 addition & 1 deletion viscy/scripts/count_flops.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,7 @@

# %%
model = VSUNet(
architecture="2.2D",
architecture="UNeXt2",
model_config={
"in_channels": 1,
"out_channels": 2,
Expand Down
13 changes: 6 additions & 7 deletions viscy/scripts/network_diagram.py
Original file line number Diff line number Diff line change
Expand Up @@ -46,7 +46,7 @@
# %%
# 3D->2D
model = VSUNet(
architecture="2.2D",
architecture="UNext2",
model_config={
"in_channels": 2,
"out_channels": 3,
Expand All @@ -61,17 +61,17 @@
model_graph = draw_graph(
model,
model.example_input_array,
graph_name="2.2D UNet",
graph_name="UNext2",
roll=True,
depth=3,
)

model_graph.visual_graph

# %%
# 2.1D UNet with upsampling in Z.
# 3D->3D
model = VSUNet(
architecture="2.2D",
architecture="UNext2",
model_config={
"in_channels": 1,
"out_channels": 2,
Expand All @@ -85,13 +85,12 @@
model_graph = draw_graph(
model,
model.example_input_array,
graph_name="2.2D UNet",
graph_name="UNext2",
roll=True,
depth=3,
)

graph22d = model_graph.visual_graph
graph22d
model_graph.visual_graph
# %% If you want to save the graphs as SVG files:
# model_graph.visual_graph.render(format="svg")

Expand Down
2 changes: 1 addition & 1 deletion viscy/scripts/visualize_features.py
Original file line number Diff line number Diff line change
Expand Up @@ -38,7 +38,7 @@
# load model
model = VSUNet.load_from_checkpoint(
"model.ckpt",
architecture="2.2D",
architecture="UNeXt2",
model_config={
"in_channels": 1,
"out_channels": 2,
Expand Down
4 changes: 2 additions & 2 deletions viscy/unet/networks/fcmae.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,7 +20,7 @@
)
from torch import BoolTensor, Size, Tensor, nn

from viscy.unet.networks.Unet22D import PixelToVoxelHead, Unet2dDecoder
from viscy.unet.networks.unext2 import PixelToVoxelHead, UNeXt2Decoder


def _init_weights(module: nn.Module) -> None:
Expand Down Expand Up @@ -430,7 +430,7 @@ def __init__(
decoder_channels[-1] = (
out_channels * in_stack_depth * stem_kernel_size[-1] ** 2
)
self.decoder = Unet2dDecoder(
self.decoder = UNeXt2Decoder(
decoder_channels,
norm_name="instance",
mode="pixelshuffle",
Expand Down
16 changes: 8 additions & 8 deletions viscy/unet/networks/Unet22D.py → viscy/unet/networks/unext2.py
Original file line number Diff line number Diff line change
Expand Up @@ -64,8 +64,8 @@ def _get_convnext_stage(
return stage


class Conv22dStem(nn.Module):
"""Stem for 2.1D networks."""
class UNeXt2Stem(nn.Module):
"""Stem for UNeXt2 networks."""

def __init__(
self,
Expand All @@ -91,7 +91,7 @@ def forward(self, x: Tensor):
return x.reshape(b, c * d, h, w)


class Unet2dUpStage(nn.Module):
class UNeXt2UpStage(nn.Module):
def __init__(
self,
in_channels: int,
Expand Down Expand Up @@ -214,7 +214,7 @@ def forward(self, x: Tensor) -> Tensor:
return x


class Unet2dDecoder(nn.Module):
class UNeXt2Decoder(nn.Module):
def __init__(
self,
num_channels: list[int],
Expand All @@ -228,7 +228,7 @@ def __init__(
self.decoder_stages = nn.ModuleList([])
stages = len(num_channels) - 1
for i in range(stages):
stage = Unet2dUpStage(
stage = UNeXt2UpStage(
in_channels=num_channels[i],
skip_channels=num_channels[i] // 2,
out_channels=num_channels[i + 1],
Expand All @@ -249,7 +249,7 @@ def forward(self, features: Sequence[Tensor]) -> Tensor:
return feat


class Unet22d(nn.Module):
class UNeXt2(nn.Module):
def __init__(
self,
in_channels: int = 1,
Expand Down Expand Up @@ -285,15 +285,15 @@ def __init__(
# replace first convolution layer with a projection tokenizer
multi_scale_encoder.stem_0 = nn.Identity()
self.encoder_stages = multi_scale_encoder
self.stem = Conv22dStem(
self.stem = UNeXt2Stem(
in_channels, num_channels[0], stem_kernel_size, in_stack_depth
)
decoder_channels = num_channels
decoder_channels.reverse()
decoder_channels[-1] = (
(out_stack_depth + 2) * out_channels * 2**2 * head_expansion_ratio
)
self.decoder = Unet2dDecoder(
self.decoder = UNeXt2Decoder(
decoder_channels,
norm_name=decoder_norm_layer,
mode=decoder_mode,
Expand Down
Loading