Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Adding segmentation utility functions #108

Closed
wants to merge 1 commit into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
118 changes: 118 additions & 0 deletions viscy/analysis/segmentation.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,118 @@
import torch
import numpy as np
import click
from cellpose import models
from skimage.exposure import rescale_intensity, equalize_adapthist
from skimage.util import invert
from numpy.typing import ArrayLike


def nuc_mem_segmentation_cellposemodel_3D(
czyx_data: ArrayLike, zyx_slicing: tuple[slice, slice, slice], **cellpose_kwargs
):
"""
Segment nuclei and membranes using Cellpose 3D model.

"""

Z_slice = zyx_slicing[0]
Y_slice = zyx_slicing[1]
X_slice = zyx_slicing[2]
czyx_data = czyx_data[:, Z_slice, Y_slice, X_slice]

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

segmentation_stack = np.zeros_like(czyx_data)
click.echo(f"Segmentation Stack shape {segmentation_stack.shape}")
cellpose_params = cellpose_kwargs["cellpose_kwargs"]
c_idx = 0
if "nucleus_kwargs" in cellpose_params:
click.echo("Segmenting Nuclei")
nuc_seg_kwargs = cellpose_params["nucleus_kwargs"]

model_nucleus_3D = models.CellposeModel(
model_type=cellpose_params["nuc_model_path"],
# net_avg=True, #Note removed CP3.0
gpu=True,
device=torch.device(device),
)
nuc_segmentation, _, _ = model_nucleus_3D.eval(czyx_data, **nuc_seg_kwargs)
segmentation_stack[c_idx] = nuc_segmentation.astype(np.uint16)
c_idx += 1
if "membrane_kwargs" in cellpose_params:
click.echo("Segmenting Membrane")
mem_seg_kwargs = cellpose_params["membrane_kwargs"]

model_membrane_3D = models.CellposeModel(
model_type=cellpose_params["mem_model_path"],
# net_avg=True,
gpu=True,
device=torch.device(device),
)
c_idx_mem, c_idx_nuc = mem_seg_kwargs["channels"]
mem_segmentation, _, _ = model_membrane_3D.eval(czyx_data, **mem_seg_kwargs)
segmentation_stack[c_idx] = mem_segmentation.astype(np.uint16)

return segmentation_stack


def nuc_mem_cp_segmentation_clahe_3D(
czyx_data: ArrayLike, zyx_slicing: tuple, clahe_kwargs, **cellpose_kwargs
):
"""
Segment nuclei and membranes using Cellpose 3D model with CLAHE applied to the input data.
"""

Z_slice = zyx_slicing[0]
Y_slice = zyx_slicing[1]
X_slice = zyx_slicing[2]
czyx_data = czyx_data[:, Z_slice, Y_slice, X_slice]

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

segmentation_stack = np.zeros_like(czyx_data, dtype=np.uint16)
click.echo(f"Segmentation Stack shape {segmentation_stack.shape}")
cellpose_params = cellpose_kwargs["cellpose_kwargs"]
# clahe_kwargs = clahe_kwargs['clahe']
c_idx = 0
if "nucleus_kwargs" in cellpose_params:
click.echo("Segmenting Nuclei")
nuc_seg_kwargs = cellpose_params["nucleus_kwargs"]

model_nucleus_3D = models.CellposeModel(
model_type=cellpose_params["nuc_model_path"],
# net_avg=True, #Note removed CP3.0
gpu=True,
device=torch.device(device),
)
# Apply CLAHE before cellpose
if "clahe_nuc" in clahe_kwargs:
click.echo("Applying CLAHE to Nuclei")
nuc_clahe = clahe_kwargs["clahe_nuc"]
czyx_data[c_idx] = rescale_intensity(czyx_data[c_idx], out_range=(0.0, 1.0))
czyx_data[c_idx] = equalize_adapthist(czyx_data[c_idx], **nuc_clahe)
nuc_segmentation, _, _ = model_nucleus_3D.eval(czyx_data, **nuc_seg_kwargs)
segmentation_stack[c_idx] = nuc_segmentation.astype(np.uint16)
c_idx += 1
if "membrane_kwargs" in cellpose_params:
click.echo("Segmenting Membrane")
mem_seg_kwargs = cellpose_params["membrane_kwargs"]

if "clahe_mem" in clahe_kwargs:
click.echo("Applying CLAHE to Membrane")
mem_clahe = clahe_kwargs["clahe_mem"]
czyx_data[c_idx] = rescale_intensity(
invert(czyx_data[c_idx]), out_range=(0.0, 1.0)
)
czyx_data[c_idx] = equalize_adapthist(czyx_data[c_idx], **mem_clahe)
model_membrane_3D = models.CellposeModel(
model_type=cellpose_params["mem_model_path"],
# net_avg=True,
gpu=True,
device=torch.device(device),
)
c_idx_mem, c_idx_nuc = mem_seg_kwargs["channels"]
mem_segmentation, _, _ = model_membrane_3D.eval(czyx_data, **mem_seg_kwargs)
segmentation_stack[c_idx] = mem_segmentation.astype(np.uint16)

return segmentation_stack
24 changes: 24 additions & 0 deletions viscy/analysis/settings/segmentation.yml
Original file line number Diff line number Diff line change
@@ -0,0 +1,24 @@
mem_model_path: "/hpc/projects/jacobo_group/Code/timelapse_seg_tracking_pipeline/3_segmentation/membrane/cellpose_2Chan_scratch_2024_04_30_11_12_00"
membrane_kwargs:
diameter: 65
channels:
- 2
- 1
cellprob_threshold: 0.4
invert: false
do_3D: true
anisotropy: 3.26
min_size: 8000

nuc_model_path: "/hpc/projects/jacobo_group/projects/cellpose/Nuclei/Deconvolved/Fine_Tune/models/cellpose_Slices_decon_nuclei_nuclei_v7_2023_06_28_16_54"
nucleus_kwargs:
diameter: 60
channels:
- 1
- 0
cellprob_threshold: 0.0
invert: false
do_3D: true
anisotropy: 3.26
min_size: 8000

Loading