-
Notifications
You must be signed in to change notification settings - Fork 3
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* initial demo * using the predict_step * modifying paths to chkpt and example pngs * updating gradio as the one on Huggingface
- Loading branch information
1 parent
987874f
commit e88a174
Showing
1 changed file
with
144 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,144 @@ | ||
import gradio as gr | ||
import torch | ||
from viscy.light.engine import VSUNet | ||
from huggingface_hub import hf_hub_download | ||
from numpy.typing import ArrayLike | ||
import numpy as np | ||
from skimage import exposure | ||
|
||
|
||
class VSGradio: | ||
def __init__(self, model_config, model_ckpt_path): | ||
self.model_config = model_config | ||
self.model_ckpt_path = model_ckpt_path | ||
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | ||
self.model = None | ||
self.load_model() | ||
|
||
def load_model(self): | ||
# Load the model checkpoint and move it to the correct device (GPU or CPU) | ||
self.model = VSUNet.load_from_checkpoint( | ||
self.model_ckpt_path, | ||
architecture="UNeXt2_2D", | ||
model_config=self.model_config, | ||
) | ||
self.model.to(self.device) # Move the model to the correct device (GPU/CPU) | ||
self.model.eval() | ||
|
||
def normalize_fov(self, input: ArrayLike): | ||
"Normalizing the fov with zero mean and unit variance" | ||
mean = np.mean(input) | ||
std = np.std(input) | ||
return (input - mean) / std | ||
|
||
def predict(self, inp): | ||
# Normalize the input and convert to tensor | ||
inp = self.normalize_fov(inp) | ||
inp = torch.from_numpy(np.array(inp).astype(np.float32)) | ||
|
||
# Prepare the input dictionary and move input to the correct device (GPU or CPU) | ||
test_dict = dict( | ||
index=None, | ||
source=inp.unsqueeze(0).unsqueeze(0).unsqueeze(0).to(self.device), | ||
) | ||
|
||
# Run model inference | ||
with torch.inference_mode(): | ||
self.model.on_predict_start() # Necessary preprocessing for the model | ||
pred = ( | ||
self.model.predict_step(test_dict, 0, 0).cpu().numpy() | ||
) # Move output back to CPU for post-processing | ||
|
||
# Post-process the model output and rescale intensity | ||
nuc_pred = pred[0, 0, 0] | ||
mem_pred = pred[0, 1, 0] | ||
nuc_pred = exposure.rescale_intensity(nuc_pred, out_range=(0, 1)) | ||
mem_pred = exposure.rescale_intensity(mem_pred, out_range=(0, 1)) | ||
|
||
return nuc_pred, mem_pred | ||
|
||
|
||
# Load the custom CSS from the file | ||
def load_css(file_path): | ||
with open(file_path, "r") as file: | ||
return file.read() | ||
|
||
|
||
# %% | ||
if __name__ == "__main__": | ||
# Download the model checkpoint from Hugging Face | ||
model_ckpt_path = hf_hub_download( | ||
repo_id="compmicro-czb/VSCyto2D", filename="epoch=399-step=23200.ckpt" | ||
) | ||
|
||
# Model configuration | ||
model_config = { | ||
"in_channels": 1, | ||
"out_channels": 2, | ||
"encoder_blocks": [3, 3, 9, 3], | ||
"dims": [96, 192, 384, 768], | ||
"decoder_conv_blocks": 2, | ||
"stem_kernel_size": [1, 2, 2], | ||
"in_stack_depth": 1, | ||
"pretraining": False, | ||
} | ||
|
||
# Initialize the Gradio app using Blocks | ||
with gr.Blocks(css=load_css("style.css")) as demo: | ||
# Title and description | ||
gr.HTML( | ||
"<div class='title-block'>Image Translation (Virtual Staining) of cellular landmark organelles</div>" | ||
) | ||
# Improved description block with better formatting | ||
gr.HTML( | ||
""" | ||
<div class='description-block'> | ||
<p><b>Model:</b> VSCyto2D</p> | ||
<p> | ||
<b>Input:</b> label-free image (e.g., QPI or phase contrast) <br> | ||
<b>Output:</b> two virtually stained channels: one for the <b>nucleus</b> and one for the <b>cell membrane</b>. | ||
</p> | ||
<p> | ||
Check out our preprint: | ||
<a href='https://www.biorxiv.org/content/10.1101/2024.05.31.596901' target='_blank'><i>Liu et al.,Robust virtual staining of landmark organelles</i></a> | ||
</p> | ||
</div> | ||
""" | ||
) | ||
|
||
vsgradio = VSGradio(model_config, model_ckpt_path) | ||
|
||
# Layout for input and output images | ||
with gr.Row(): | ||
input_image = gr.Image(type="numpy", image_mode="L", label="Upload Image") | ||
with gr.Column(): | ||
output_nucleus = gr.Image(type="numpy", label="VS Nucleus") | ||
output_membrane = gr.Image(type="numpy", label="VS Membrane") | ||
|
||
# Button to trigger prediction | ||
submit_button = gr.Button("Submit") | ||
|
||
# Define what happens when the button is clicked | ||
submit_button.click( | ||
vsgradio.predict, | ||
inputs=input_image, | ||
outputs=[output_nucleus, output_membrane], | ||
) | ||
|
||
# Example images and article | ||
gr.Examples( | ||
examples=["examples/a549.png", "examples/hek.png"], inputs=input_image | ||
) | ||
|
||
# Article or footer information | ||
gr.HTML( | ||
""" | ||
<div class='article-block'> | ||
<p> Model trained primarily on HEK293T, BJ5, and A549 cells. For best results, use quantitative phase images (QPI) or Zernike phase contrast.</p> | ||
<p> For training, inference and evaluation of the model refer to the <a href='https://github.com/mehta-lab/VisCy/tree/main/examples/virtual_staining/dlmbl_exercise' target='_blank'>GitHub repository</a>.</p> | ||
</div> | ||
""" | ||
) | ||
|
||
# Launch the Gradio app | ||
demo.launch() |