Skip to content

Codes of MVSFormer++: Revealing the Devil in Transformer’s Details for Multi-View Stereo (ICLR2024)

License

Notifications You must be signed in to change notification settings

maybeLx/MVSFormerPlusPlus

Repository files navigation

MVSFormer++: Revealing the Devil in Transformer’s Details for Multi-View Stereo (ICLR2024)

PWC PWC

[arXiv] [openreview]

  • Releasing codes of training and testing

  • Releasing pre-trained models trained on DTU

  • Releasing pre-trained models fine-tuned on BlendedMVS and test code.

  • NEWS: Updating a script to process mvs data with depth range free cameras (such as nerf transforms.json)

Installation

​ Please first see FlashAttention2 for original requirements and compilation instructions, or you should make sure torch>=2.1 to use F.scaled_dot_product_attention with custom scales.

git clone https://github.com/maybeLx/MVSFormerPlusPlus.git
cd MVSFormerPlusPlus
pip install -r requirements.txt

​ We also highly recommend to install fusibile from (https://github.com/YoYo000/fusibile) for the depth fusion.

git clone https://github.com/YoYo000/fusibile.git
cd fusibile
cmake .
make

Tips: You should revise CUDA_NVCC_FLAGS in CMakeLists.txt according the gpu device you used. We set -gencode arch=compute_70,code=sm_70 instead of -gencode arch=compute_60,code=sm_60 with V100 GPUs. For other GPU types, you can follow

# 1080Ti
-gencode arch=compute_60,code=sm_60

# 2080Ti
-gencode arch=compute_75,code=sm_75

# 3090Ti
-gencode arch=compute_86,code=sm_86

# V100
-gencode arch=compute_70,code=sm_70

More compile relations could be found in here

Datasets

Please refer to MVSFormer

Training

Pretrained weights

DINOv2-B

Training MVSFormer++ on DTU with 4 48GB A6000 GPUs costs around 1 day. We set the max epoch=15 in DTU.

CUDA_VISIBLE_DEVICES=0,1,2,3 python train.py --config config/mvsformer++.json \
                                             --exp_name MVSFormer++ \
                                             --DDP

We should finetune our model based on BlendedMVS before the testing on Tanks&Temples.

CUDA_VISIBLE_DEVICES=0,1,2,3 python train.py --config ./saved/models/DINOv2/mvsformer++/mvsformer++_ft.json  \
                                             --exp_name MVSFormer++_blendedmvs_dtu_mixed_M0 \
                                             --dataloader_type "BlendedLoader" \
                                             --data_path ${YOUR_BLENDEMVS_PATH}
                                             --dtu_model_path ./saved/models/DINOv2/mvsformer++/model_best.pth \
                                             --finetune \
                                             --balanced_training \
                                             --DDP

Test

Pretrained models and additional pair.txt : OneDrive

For testing on DTU:

CUDA_VISIBLE_DEVICES=0 python test.py --dataset dtu --batch_size 1  \
                                      --testpath ${dtu_test_path}   --testlist ./lists/dtu/test.txt   \
                                      --resume ${MODEL_WEIGHT_PATH}   \
                                      --outdir ${OUTPUT_DIR}   --interval_scale 1.06 --num_view 5   \
                                      --numdepth 192 --max_h 1152 --max_w 1536 --filter_method gipuma   \
                                      --disp_threshold 0.1 --num_consistent 2 --prob_threshold 0.5

For testing on Tanks&Temple:

You can run test_tt_adv.sh and test_tt_inter.sh in the scripts. Please specify the ${MODEL_WEIGHT_PATH} and ${OUTPUT_DIR}. We recommend using the checkpoint (tnt_ckpt available on OneDrive) for testing on this dataset.

Test on your own data

Our MVSFormer++ requires camera parameters and view selection file. If you do not have them, you can use Colmap to estimate cameras and convert them to MVSNet format by colmap2mvsnet.py. Please arrange your files as follows.

- <dense_folder>
    - images_col  # input images of Colmap
    - sparse_col  # SfM output from colmap in .txt format
    - cams        # output MVSNet cameras, to be generated
    - images      # output MVSNet input images, to be generated
    - pair.txt    # output view selection file, to be generated
    - undistorted  # undistorted images folder, contains cams, images, pair.txt, sparse

An example of running Colmap

colmap feature_extractor \
    --database_path <dense_folder>/database.db \
    --image_path <dense_folder>/images_col

colmap exhaustive_matcher \
    --database_path <dense_folder>/database.db

colmap mapper \
    --database_path <dense_folder>/database.db \
    --image_path <dense_folder>/images_col \
    --output_path <dense_folder>/sparse_col

colmap model_converter \
    --input_path <dense_folder>/sparse_col/0 \
    --output_path <dense_folder>/sparse_col \
    --output_type TXT

colmap image_undistorter --image_path <dense_folder>/images_col \
        --input_path <dense_folder>/sparse_col/0 \
        --output_path <dense_folder>/undistorted  \
        --output_type COLMAP
cd <dense_folder>/undistorted && mv images images_col

Run colmap2mvsnet.py by

python colmap2mvsnet.py --dense_folder <dense_folder>/undistorted --max_d 256 --convert_format

For poses without sparse points (nerf poses), which is necessary for achieving depth range, we recommend use nerf2mvsnet.py instead. Note that you should activate nerf2opencv to to process nerf poses with different coordinates.

python nerf2mvsnet.py --dense_folder <dense_folder> --max_d 256 --save_ply --nerf2opencv

Please note that: the resolution of input images must be divisible by 64. we can change the parameter of max_h and max_w. For test on your own dataset:

CUDA_VISIBLE_DEVICES=0 python test.py --dataset mydataset --batch_size 1  \
                                      --testpath ${scene_test_path}   --testlist ${scene_test_list}   \
                                      --resume ${MODEL_WEIGHT_PATH}   \
                                      --outdir ${OUTPUT_DIR}   --interval_scale 1.06 --num_view 5   \
                                      --numdepth 192 --max_h ${max_h} --max_w ${max_w} --filter_method dpcd   \
                                      --conf 0.5

Cite

If you found our program helpful, please consider citing:

@inproceedings{cao2024mvsformer++,
      title={MVSFormer++: Revealing the Devil in Transformer's Details for Multi-View Stereo}, 
      author={Chenjie Cao, Xinlin Ren and Yanwei Fu},
      booktitle={International Conference on Learning Representations (ICLR)},
      year={2024}
}

Acknowledgments

We borrow the code from VisMVSNet, MVSFormer. We express gratitude for these works' contributions!

About

Codes of MVSFormer++: Revealing the Devil in Transformer’s Details for Multi-View Stereo (ICLR2024)

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published