Skip to content

maverickg/pystan

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

PyStan: The Python Interface to Stan

https://travis-ci.org/stan-dev/pystan.png

PyStan has an interface similar to that of RStan. For an introduction to Stan and RStan see http://mc-stan.org/ and RStan Getting Started.

PyStan aims to reproduce the functionality present in RStan. There are a few features present in RStan that have yet to be implemented in PyStan. If you find a feature missing that you use frequently please file a bug report so developers can better direct their efforts.

Important links

Similar projects

Installation

NumPy and Cython (version 0.19.1 or greater) are required. matplotlib is optional.

PyStan and the required packages may be installed from the Python Package Index using pip.

pip install numpy Cython
pip install pystan

Alternatively, if Cython (version 0.19 or greater) and NumPy are already available, PyStan may be installed from source with the following commands

git clone https://github.com/stan-dev/pystan.git
cd pystan
python setup.py install

If you encounter an ImportError after compiling from source, try changing out of the source directory before attempting import pystan. For example, on Linux and OS X cd /tmp would work.

Example

import pystan
import numpy as np

schools_code = """
data {
    int<lower=0> J; // number of schools
    real y[J]; // estimated treatment effects
    real<lower=0> sigma[J]; // s.e. of effect estimates
}
parameters {
    real mu;
    real<lower=0> tau;
    real eta[J];
}
transformed parameters {
    real theta[J];
    for (j in 1:J)
        theta[j] <- mu + tau * eta[j];
}
model {
    eta ~ normal(0, 1);
    y ~ normal(theta, sigma);
}
"""

schools_dat = {'J': 8,
               'y': [28,  8, -3,  7, -1,  1, 18, 12],
               'sigma': [15, 10, 16, 11,  9, 11, 10, 18]}

fit = pystan.stan(model_code=schools_code, data=schools_dat,
                  iter=1000, chains=4)

print(fit)

eta = fit.extract(permuted=True)['eta']
np.mean(eta, axis=0)

# if matplotlib is installed (optional, not required), a visual summary and
# traceplot are available
fit.plot()

About

PyStan: Python interface to Stan

Resources

License

Stars

Watchers

Forks

Packages

No packages published