This R package provides the infrastructure for representing, manipulating and analyzing transaction data and patterns (frequent itemsets and association rules). Also provides interfaces to C implementations of the association mining algorithms Apriori and Eclat.
Additional packages in the arules family are: arulesViz, arulesSequences and arulesNBMiner.
- Stable CRAN version: install from within R.
- Current development version: Download package from AppVeyor or install via
install_git("mhahsler/arules")
(needs devtools)
R> library("arules")
R> data("Adult")
## Mine association rules.
R> rules <- apriori(Adult,
+ parameter = list(supp = 0.5, conf = 0.9, target = "rules"))
Parameter specification:
confidence minval smax arem aval originalSupport support minlen maxlen target ext
0.9 0.1 1 none FALSE TRUE 0.5 1 10 rules FALSE
Algorithmic control:
filter tree heap memopt load sort verbose
0.1 TRUE TRUE FALSE TRUE 2 TRUE
apriori - find association rules with the apriori algorithm
version 4.21 (2004.05.09) (c) 1996-2004 Christian Borgelt
set item appearances ...[0 item(s)] done [0.00s].
set transactions ...[115 item(s), 48842 transaction(s)] done [0.03s].
sorting and recoding items ... [9 item(s)] done [0.00s].
creating transaction tree ... done [0.03s].
checking subsets of size 1 2 3 4 done [0.00s].
writing ... [52 rule(s)] done [0.00s].
creating S4 object ... done [0.01s].
R> summary(rules)
set of 52 rules
rule length distribution (lhs + rhs):
1 2 3 4
2 13 24 13
Min. 1st Qu. Median Mean 3rd Qu. Max.
1.000 2.000 3.000 2.923 3.250 4.000
summary of quality measures:
support confidence lift
Min. :0.5084 Min. :0.9031 Min. :0.9844
1st Qu.:0.5415 1st Qu.:0.9155 1st Qu.:0.9937
Median :0.5974 Median :0.9229 Median :0.9997
Mean :0.6436 Mean :0.9308 Mean :1.0036
3rd Qu.:0.7426 3rd Qu.:0.9494 3rd Qu.:1.0057
Max. :0.9533 Max. :0.9583 Max. :1.0586
mining info:
data ntransactions support confidence
Adult 48842 0.5 0.9
R> inspect(head(sort(rules, by = "lift")))
lhs rhs support confidence lift
1 {sex=Male,
native-country=United-States} => {race=White} 0.5415421 0.9051090 1.058554
2 {sex=Male,
capital-loss=None,
native-country=United-States} => {race=White} 0.5113632 0.9032585 1.056390
3 {race=White} => {native-country=United-States} 0.7881127 0.9217231 1.027076
4 {race=White,
capital-loss=None} => {native-country=United-States} 0.7490480 0.9205626 1.025783
5 {race=White,
sex=Male} => {native-country=United-States} 0.5415421 0.9204803 1.025691
6 {race=White,
capital-gain=None} => {native-country=United-States} 0.7194628 0.9202807 1.025469
- Development version of arules on github.
- Michael Hahsler, Bettina Grün and Kurt Hornik, arules - A Computational Environment for Mining Association Rules and Frequent Item Sets. Journal of Statistical Software, 14(15), 2005.
- Michael Hahsler, Sudheer Chelluboina, Kurt Hornik, and Christian Buchta. The arules R-package ecosystem: Analyzing interesting patterns from large transaction datasets. Journal of Machine Learning Research, 12:1977-1981, 2011.
- arules package vignette with complete examples.
- Reference manual
Maintainer: Michael Hahsler