Skip to content

Commit

Permalink
upd
Browse files Browse the repository at this point in the history
  • Loading branch information
affeldt-aist committed Feb 25, 2023
1 parent 5fc4aa8 commit fac9965
Show file tree
Hide file tree
Showing 2 changed files with 31 additions and 31 deletions.
50 changes: 25 additions & 25 deletions theories/kernel.v
Original file line number Diff line number Diff line change
Expand Up @@ -41,16 +41,16 @@ Local Open Scope classical_set_scope.
Local Open Scope ring_scope.
Local Open Scope ereal_scope.

(* TODO: PR*)
Lemma emeasurable_itv1 (R : realType) (i : nat) :
measurable (`[(i%:R)%:E, (i.+1%:R)%:E[%classic : set \bar R).
(* PR in progress *)
Lemma emeasurable_itv (R : realType) (i : interval (\bar R)) :
measurable ([set` i]%classic : set \bar R).
Proof.
rewrite -[X in measurable X]setCK.
apply: measurableC.
rewrite set_interval.setCitv /=.
apply: measurableU.
rewrite -[X in measurable X]setCK; apply: measurableC.
rewrite set_interval.setCitv /=; apply: measurableU => [|].
- move: i => [[b1 i1|[|]] i2] /=; rewrite ?set_interval.set_itvE//.
exact: emeasurable_itv_ninfty_bnd.
exact: emeasurable_itv_bnd_pinfty.
- move: i => [i1 [b2 i2|[|]]] /=; rewrite ?set_interval.set_itvE//.
exact: emeasurable_itv_bnd_pinfty.
Qed.

Section sfinite_fubini.
Expand All @@ -68,7 +68,7 @@ pose s2 := sfinite_measure_seq m2.
rewrite [LHS](eq_measure_integral [the measure _ _ of mseries s1 0]); last first.
by move=> A mA _; rewrite /=; exact: sfinite_measure_seqP.
transitivity (\int[mseries s1 0]_x \int[mseries s2 0]_y f (x, y)).
apply eq_integral => x _; apply: eq_measure_integral => ? ? _.
apply: eq_integral => x _; apply: eq_measure_integral => ? ? _.
exact: sfinite_measure_seqP.
transitivity (\sum_(n <oo) \int[s1 n]_x \sum_(m <oo) \int[s2 m]_y f (x, y)).
rewrite ge0_integral_measure_series; [|by []| |]; last 2 first.
Expand All @@ -79,29 +79,29 @@ transitivity (\sum_(n <oo) \int[s1 n]_x \sum_(m <oo) \int[s2 m]_y f (x, y)).
by rewrite ge0_integral_measure_series//; exact/measurable_fun_prod1.
apply: ge0_emeasurable_fun_sum; first by move=> k x; exact: integral_ge0.
by move=> k; apply: measurable_fun_fubini_tonelli_F.
apply: eq_eseries => n _; apply eq_integral => x _.
apply: eq_eseriesr => n _; apply: eq_integral => x _.
by rewrite ge0_integral_measure_series//; exact/measurable_fun_prod1.
transitivity (\sum_(n <oo) \sum_(m <oo) \int[s1 n]_x \int[s2 m]_y f (x, y)).
apply eq_eseries => n _; rewrite integral_nneseries//.
apply: eq_eseriesr => n _; rewrite integral_nneseries//.
by move=> m; exact: measurable_fun_fubini_tonelli_F.
by move=> m x _; exact: integral_ge0.
transitivity (\sum_(n <oo) \sum_(m <oo) \int[s2 m]_y \int[s1 n]_x f (x, y)).
apply eq_eseries => n _; apply eq_eseries => m _.
apply: eq_eseriesr => n _; apply: eq_eseriesr => m _.
by rewrite fubini_tonelli//; exact: finite_measure_sigma_finite.
transitivity (\sum_(n <oo) \int[mseries s2 0]_y \int[s1 n]_x f (x, y)).
apply eq_eseries => n _; rewrite ge0_integral_measure_series//.
apply: eq_eseriesr => n _; rewrite ge0_integral_measure_series//.
by move=> y _; exact: integral_ge0.
exact: measurable_fun_fubini_tonelli_G.
transitivity (\int[mseries s2 0]_y \sum_(n <oo) \int[s1 n]_x f (x, y)).
rewrite integral_nneseries//.
by move=> n; apply: measurable_fun_fubini_tonelli_G.
by move=> n y _; exact: integral_ge0.
transitivity (\int[mseries s2 0]_y \int[mseries s1 0]_x f (x, y)).
apply eq_integral => y _.
apply: eq_integral => y _.
by rewrite ge0_integral_measure_series//; exact/measurable_fun_prod2.
transitivity (\int[m2]_y \int[mseries s1 0]_x f (x, y)).
by apply eq_measure_integral => A mA _ /=; rewrite sfinite_measure_seqP.
apply eq_integral => y _; apply eq_measure_integral => A mA _ /=.
by apply: eq_measure_integral => A mA _ /=; rewrite sfinite_measure_seqP.
apply: eq_integral => y _; apply: eq_measure_integral => A mA _ /=.
by rewrite sfinite_measure_seqP.
Qed.

Expand Down Expand Up @@ -256,7 +256,7 @@ exists (fun n => if n is O then [the _.-ker _ ~> _ of k] else
by case => [|_]; [exact: measure_uub|exact: kzero_uub].
move=> t U mU/=; rewrite /mseries.
rewrite (nneseries_split 1%N)// big_ord_recl/= big_ord0 adde0.
rewrite ereal_series (@eq_eseries _ _ (fun=> 0%E)); last by case.
rewrite ereal_series (@eq_eseriesr _ _ (fun=> 0%E)); last by case.
by rewrite eseries0// adde0.
Qed.

Expand Down Expand Up @@ -299,7 +299,7 @@ End sfinite.

Lemma sfinite_kernel_measure d d' (Z : measurableType d) (X : measurableType d')
(R : realType) (k : R.-sfker Z ~> X) (z : Z) :
sfinite_measure_def (k z).
sfinite_measure (k z).
Proof.
have [s ks] := sfinite k.
exists (s ^~ z).
Expand Down Expand Up @@ -715,7 +715,7 @@ exists (fun n => [the _.-ker _ ~> _ of kadd (f1 n) (f2 n)]).
by rewrite /msum !big_ord_recr/= big_ord0 add0e EFinD lte_add.
move=> x U mU.
rewrite /kadd/= -/(measure_add (k1 x) (k2 x)) measure_addE hk1//= hk2//=.
rewrite /mseries -nneseriesD//; apply: eq_eseries => n _ /=.
rewrite /mseries -nneseriesD//; apply: eq_eseriesr => n _ /=.
by rewrite -/(measure_add (f1 n x) (f2 n x)) measure_addE.
Qed.

Expand Down Expand Up @@ -997,7 +997,7 @@ transitivity (([the _.-ker _ ~> _ of kseries l_] \; [the _.-ker _ ~> _ of kserie
rewrite /= /kcomp/= integral_nneseries//=; last first.
by move=> n; have /measurable_fun_prod1 := measurable_kernel (k_ n) _ mU; exact.
transitivity (\sum_(i <oo) \sum_(j <oo) (l_ j \; k_ i) x U).
apply: eq_eseries => i _; rewrite integral_kseries//.
apply: eq_eseriesr => i _; rewrite integral_kseries//.
by have /measurable_fun_prod1 := measurable_kernel (k_ i) _ mU; exact.
rewrite /mseries -hkl/=.
rewrite (_ : setT = setT `*`` (fun=> setT)); last by apply/seteqP; split.
Expand Down Expand Up @@ -1099,7 +1099,7 @@ Let integral_kcomp_indic x E (mE : measurable E) :
\int[(l \; k) x]_z (\1_E z)%:E = \int[l x]_y (\int[k (x, y)]_z (\1_E z)%:E).
Proof.
rewrite integral_indic//= /kcomp.
by apply eq_integral => y _; rewrite integral_indic.
by apply: eq_integral => y _; rewrite integral_indic.
Qed.

Let integral_kcomp_nnsfun x (f : {nnsfun Z >-> R}) :
Expand Down Expand Up @@ -1142,7 +1142,7 @@ have [r0|r0] := leP 0%R r.
rewrite ge0_integralM//; last first.
have := measurable_kernel k (f @^-1` [set r]) (measurable_sfunP f (measurable_set1 r)).
by move/measurable_fun_prod1; exact.
by congr (_ * _); apply eq_integral => y _; rewrite integral_indic// setIT.
by congr (_ * _); apply: eq_integral => y _; rewrite integral_indic// setIT.
rewrite integral0_eq ?mule0; last first.
by move=> y _; rewrite integral0_eq// => z _; rewrite preimage_nnfun0// indic0.
by rewrite integral0_eq// => y _; rewrite preimage_nnfun0// measure0 mule0.
Expand All @@ -1169,18 +1169,18 @@ transitivity (\int[l x]_y lim (fun n => \int[k (x, y)]_z (f_ n z)%:E)).
by move=> /measurable_fun_prod1; exact.
+ by move=> z; rewrite lee_fin.
+ exact/EFin_measurable_fun.
- by move=> n y _; apply integral_ge0 => // z _; rewrite lee_fin.
- by move=> n y _; apply: integral_ge0 => // z _; rewrite lee_fin.
- move=> y _ a b ab; apply: ge0_le_integral => //.
+ by move=> z _; rewrite lee_fin.
+ exact/EFin_measurable_fun.
+ by move=> z _; rewrite lee_fin.
+ exact/EFin_measurable_fun.
+ by move: ab => /ndf_ /lefP ab z _; rewrite lee_fin.
apply eq_integral => y _; rewrite -monotone_convergence//; last 3 first.
apply: eq_integral => y _; rewrite -monotone_convergence//; last 3 first.
- by move=> n; exact/EFin_measurable_fun.
- by move=> n z _; rewrite lee_fin.
- by move=> z _ a b /ndf_ /lefP; rewrite lee_fin.
by apply eq_integral => z _; apply/cvg_lim => //; exact: f_f.
by apply: eq_integral => z _; apply/cvg_lim => //; exact: f_f.
Qed.

End integral_kcomp.
12 changes: 6 additions & 6 deletions theories/prob_lang.v
Original file line number Diff line number Diff line change
Expand Up @@ -164,9 +164,9 @@ rewrite (_ : (fun x => _) = (fun x => x *
(\1_(`[i%:R%:E, i.+1%:R%:E [%classic : set _) x)%:E)); last first.
apply/funext => x; case: ifPn => ix; first by rewrite indicE/= mem_set ?mule1.
by rewrite indicE/= memNset ?mule0// /= in_itv/=; exact/negP.
apply emeasurable_funM => /=; first exact: measurable_fun_id.
apply: emeasurable_funM => /=; first exact: measurable_fun_id.
apply/EFin_measurable_fun.
by rewrite (_ : \1__ = mindic R (emeasurable_itv1 R i)).
by rewrite (_ : \1__ = mindic R (emeasurable_itv `[(i%:R)%:E, (i.+1%:R)%:E[)).
Qed.

Definition mk i t := [the measure _ _ of k mf i t].
Expand Down Expand Up @@ -615,15 +615,15 @@ Lemma letin_iteT : f t -> letin (ite mf k1 k2) u t U = letin k1 u t U.
Proof.
move=> ftT.
rewrite !letinE/=.
apply eq_measure_integral => V mV _.
apply: eq_measure_integral => V mV _.
by rewrite iteE ftT.
Qed.

Lemma letin_iteF : ~~ f t -> letin (ite mf k1 k2) u t U = letin k2 u t U.
Proof.
move=> ftF.
rewrite !letinE/=.
apply eq_measure_integral => V mV _.
apply: eq_measure_integral => V mV _.
by rewrite iteE (negbTE ftF).
Qed.

Expand Down Expand Up @@ -679,7 +679,7 @@ Proof. exact: measure_semi_sigma_additive. Qed.
HB.instance Definition _ z := @isMeasure.Build _ R X (T z) (T0 z) (T_ge0 z)
(@T_semi_sigma_additive z).

Let sfinT z : sfinite_measure_def (T z). Proof. exact: sfinite_kernel_measure. Qed.
Let sfinT z : sfinite_measure (T z). Proof. exact: sfinite_kernel_measure. Qed.
HB.instance Definition _ z := @Measure_isSFinite_subdef.Build _ X R
(T z) (sfinT z).

Expand All @@ -691,7 +691,7 @@ Proof. exact: measure_semi_sigma_additive. Qed.
HB.instance Definition _ z := @isMeasure.Build _ R Y (U z) (U0 z) (U_ge0 z)
(@U_semi_sigma_additive z).

Let sfinU z : sfinite_measure_def (U z). Proof. exact: sfinite_kernel_measure. Qed.
Let sfinU z : sfinite_measure (U z). Proof. exact: sfinite_kernel_measure. Qed.
HB.instance Definition _ z := @Measure_isSFinite_subdef.Build _ Y R
(U z) (sfinU z).

Expand Down

0 comments on commit fac9965

Please sign in to comment.