Skip to content

Commit

Permalink
rebase
Browse files Browse the repository at this point in the history
  • Loading branch information
affeldt-aist committed Aug 13, 2021
1 parent 3dfd643 commit e3d8044
Showing 1 changed file with 4 additions and 216 deletions.
220 changes: 4 additions & 216 deletions theories/measure_wip.v
Original file line number Diff line number Diff line change
Expand Up @@ -8,17 +8,9 @@ From HB Require Import structures.
Require Import sequences measure csum cardinality.

(******************************************************************************)
(* measure.v cont'd *)
(* (Extension theorem and Lebesgue measure) *)
(* Lebesgue measure *)
(* *)
(* Extension theorem: *)
(* measurable_cover X == the set of sequences F such that *)
(* - forall i, F i is measurable *)
(* - X `<=` \bigcup_i (F i) *)
(* mu_ext mu == the extension of the measure mu, a measure over a *)
(* ring of sets; it is an outer measure, declared as *)
(* canonical (i.e., we have the notation *)
(* [outer_measure of mu_ext mu]) *)
(* To be integrated into measure.v *)
(* *)
(* s<< G >> == sigma-algebra generated by G *)
(* dynkin S == S is a Dynkin system *)
Expand Down Expand Up @@ -77,200 +69,6 @@ Local Open Scope classical_set_scope.
Local Open Scope ring_scope.
Local Open Scope ereal_scope.

(* NB: PR in progress *)
(* TODO: remove when available in all the Coq versions supported by the CI
(as of today, only in Coq 8.13) *)
Definition uncurry {A B C:Type} (f:A -> B -> C)
(p:A * B) : C := match p with (x, y) => f x y end.

Lemma adde_def_nneg_series (R : realType) (f g : (\bar R)^nat) (P Q : pred nat) :
(forall n, P n -> 0 <= f n) -> (forall n, Q n -> 0 <= g n) ->
adde_def (\sum_(i <oo | P i) f i) (\sum_(i <oo | Q i) g i).
Proof.
move=> f0 g0; rewrite /adde_def !negb_and; apply/andP; split.
- apply/orP; right; apply/eqP => Qg.
by have := ereal_nneg_series_lim_ge0 g0; rewrite Qg.
- apply/orP; left; apply/eqP => Pf.
by have := ereal_nneg_series_lim_ge0 f0; rewrite Pf.
Qed.

(* PR 395 in progress *)
Lemma cvg_geometric_series_half (R : archiFieldType) (r : R) n :
series (fun k => r / (2 ^ (k + n.+1))%:R : R^o) --> (r / 2 ^+ n : R^o).
Proof.
rewrite (_ : series _ = series (geometric (r / (2 ^ n.+1)%:R) 2^-1%R)); last first.
rewrite funeqE => m; rewrite /series /=; apply eq_bigr => k _.
by rewrite expnD natrM (mulrC (2 ^ k)%:R) invfM exprVn (natrX _ 2 k) mulrA.
apply: cvg_trans.
apply: cvg_geometric_series.
by rewrite ger0_norm // invr_lt1 // ?ltr1n // unitfE.
rewrite [X in (X - _)%R](splitr 1) div1r addrK.
by rewrite -mulrA -invfM expnSr natrM -mulrA divff// mulr1 natrX.
Qed.
Arguments cvg_geometric_series_half {R} _ _.

Lemma epsilon_trick (R : realType) (A : (\bar R)^nat) (e : {nonneg R})
(P : pred nat) : (forall n, 0 <= A n) ->
\sum_(i <oo | P i) (A i + (e%:nngnum / (2 ^ i.+1)%:R)%:E) <=
\sum_(i <oo | P i) A i + e%:nngnum%:E.
Proof.
move=> A0; rewrite (@le_trans _ _ (lim (fun n => (\sum_(0 <= i < n | P i) A i) +
\sum_(0 <= i < n) (e%:nngnum / (2 ^ i.+1)%:R)%:E))) //.
rewrite ereal_pseriesD //; last by move=> n _; apply: divr_ge0.
rewrite ereal_limD //.
- rewrite lee_add2l //; apply: lee_lim => //.
+ by apply: is_cvg_ereal_nneg_series => n _; apply: divr_ge0.
+ by apply: is_cvg_ereal_nneg_series => n _; apply: divr_ge0.
+ by near=> n; apply: lee_sum_nneg_subset => // i _; apply divr_ge0.
- exact: is_cvg_ereal_nneg_series.
- by apply: is_cvg_ereal_nneg_series => n _; apply: divr_ge0.
- by apply: adde_def_nneg_series => // n _; apply: divr_ge0.
suff cvggeo : (fun n => \sum_(0 <= i < n) (e%:nngnum / (2 ^ i.+1)%:R)%:E) -->
e%:nngnum%:E.
rewrite ereal_limD //.
- by rewrite lee_add2l // (cvg_lim _ cvggeo).
- exact: is_cvg_ereal_nneg_series.
- by apply: is_cvg_ereal_nneg_series => ?; rewrite lee_fin divr_ge0.
- by rewrite (cvg_lim _ cvggeo) //= fin_num_adde_def.
rewrite (_ : (fun n => _) = @EFin _ \o
(fun n => \sum_(0 <= i < n) (e%:nngnum / (2 ^ (i + 1))%:R))%R); last first.
rewrite funeqE => n /=; rewrite (@big_morph _ _ (@EFin _) 0 adde)//.
by under [in RHS]eq_bigr do rewrite addn1.
apply: cvg_comp; last apply cvg_refl.
have := cvg_geometric_series_half e%:nngnum O.
by rewrite expr0 divr1; apply: cvg_trans.
Grab Existential Variables. all: end_near. Qed.
(* /PR 395 in progress *)

Section measurable_cover.
Variable T : ringOfSetsType.
Implicit Types (X : set T) (F : (set T)^nat).

Definition measurable_cover X := [set F : (set T)^nat |
(forall i, measurable (F i)) /\ X `<=` \bigcup_k (F k)].

Lemma cover_measurable X F : measurable_cover X F -> forall k, measurable (F k).
Proof. by move=> + k; rewrite /measurable_cover => -[] /(_ k). Qed.

Lemma cover_subset X F : measurable_cover X F -> X `<=` \bigcup_k (F k).
Proof. by case. Qed.

End measurable_cover.

Section measure_extension.
Variables (R : realType) (T : ringOfSetsType) (mu : {measure set T -> \bar R}).

Definition mu_ext (X : set T) : \bar R :=
ereal_inf [set \sum_(i <oo) mu (A i) | A in measurable_cover X].

Lemma le_mu_ext : {homo mu_ext : A B / A `<=` B >-> A <= B}.
Proof.
move=> A B AB; apply/le_ereal_inf => x [B' [mB' BB']].
by move=> <-{x}; exists B' => //; split => //; apply: subset_trans AB BB'.
Qed.

Lemma mu_ext_ge0 A : 0%E <= mu_ext A.
Proof.
apply: lb_ereal_inf => x [B [mB AB] <-{x}]; rewrite ereal_lim_ge //=.
by apply: is_cvg_ereal_nneg_series => // n _; exact: measure_ge0.
by near=> n; rewrite sume_ge0 // => i _; apply: measure_ge0.
Grab Existential Variables. all: end_near. Qed.

Lemma mu_ext0 : mu_ext set0 = 0%E.
Proof.
apply/eqP; rewrite eq_le; apply/andP; split; last first.
by apply: mu_ext_ge0; exact: measurable0.
rewrite /mu_ext; apply ereal_inf_lb; exists (fun _ => set0).
by split => // _; exact: measurable0.
by apply: (@lim_near_cst _ _ _ _ _ 0%E) => //; near=> n => /=; rewrite big1.
Grab Existential Variables. all: end_near. Qed.

Lemma measurable_uncurry (G : ((set T)^nat)^nat) (x : nat * nat) :
measurable (G x.1 x.2) -> measurable (uncurry G x).
Proof. by case: x. Qed.

Lemma mu_ext_sigma_subadditive : sigma_subadditive mu_ext.
Proof.
move=> A; have [[i ioo]|] := pselect (exists i, mu_ext (A i) = +oo).
rewrite (ereal_nneg_series_pinfty _ _ ioo)// ?lee_pinfty// => n _.
exact: mu_ext_ge0.
rewrite -forallNE => Aoo.
suff add2e : forall e : {posnum R},
mu_ext (\bigcup_n A n) <= \sum_(i <oo) mu_ext (A i) + e%:num%:E.
apply lee_adde => e.
by rewrite -(mul1r e%:num) -(@divff _ 2%:R)// -mulrAC -mulrA add2e.
move=> e; rewrite (le_trans _ (epsilon_trick _ _ _))//; last first.
by move=> n; apply: mu_ext_ge0.
pose P n (B : (set T)^nat) := measurable_cover (A n) B /\
\sum_(k <oo) mu (B k) <= mu_ext (A n) + (e%:num / (2 ^ n.+1)%:R)%:E.
have [G PG] : {G : ((set T)^nat)^nat & forall n, P n (G n)}.
apply: (@choice _ _ P) => n; rewrite /P /mu_ext.
set S := (X in ereal_inf X); move infS : (ereal_inf S) => iS.
case: iS infS => [r Sr|Soo|Soo].
- have en1 : (0 < e%:num / (2 ^ n.+1)%:R)%R.
by rewrite divr_gt0 // ltr0n expn_gt0.
have [x [[B [mB AnB muBx]] xS]] := lb_ereal_inf_adherent (PosNum en1) Sr.
exists B; split => //; rewrite muBx -Sr; apply/ltW.
by rewrite (lt_le_trans xS) // lee_add2l //= lee_fin ler_pmul.
- by have := Aoo n; rewrite /mu_ext Soo.
- suff : lbound S 0%E by move/lb_ereal_inf; rewrite Soo.
move=> /= _ [B [mB AnB] <-].
by apply: ereal_nneg_series_lim_ge0 => ? _; exact: measure_ge0.
have muG_ge0 : forall x, 0%E <= (mu \o uncurry G) x.
by move=> x; apply/measure_ge0/measurable_uncurry/(PG x.1).1.1.
apply (@le_trans _ _ (\csum_(i in setT) (mu \o uncurry G) i)).
rewrite /mu_ext; apply ereal_inf_lb.
have [f [Tf fi]] : exists e, enumeration (@setT (nat * nat)) e /\ injective e.
have /countable_enumeration [|[f ef]] := countable_prod_nat.
by rewrite predeqE => /(_ (0%N, 0%N)) [] /(_ Logic.I).
by exists (enum_wo_rep infinite_prod_nat ef); split;
[exact: enumeration_enum_wo_rep | exact: injective_enum_wo_rep].
exists (uncurry G \o f).
split => [i|]; first exact/measurable_uncurry/(PG (f i).1).1.1.
apply: (@subset_trans _ (\bigcup_n \bigcup_k G n k)) => [t [i _]|].
by move=> /(cover_subset (PG i).1) -[j _ ?]; exists i => //; exists j.
move=> t [i _ [j _ Bijt]].
have [k fkij] : exists k, f k = (i, j).
by have : setT (i, j) by []; rewrite Tf => -[k _ fkij]; exists k.
by exists k => //=; rewrite fkij.
rewrite -(@csum_image _ _ (mu \o uncurry G) _ xpredT) //; congr csum.
by rewrite Tf predeqE=> -[a b]; split=> -[n _ <-]; exists n.
rewrite (_ : csum _ _ = \sum_(i <oo) \sum_(j <oo ) mu (G i j)); last first.
pose J : nat -> set (nat * nat) := fun i => [set (i, j) | j in setT].
rewrite (_ : setT = \bigcup_k J k); last first.
by rewrite predeqE => -[a b]; split => // _; exists a => //; exists b.
rewrite csum_bigcup /=; last 3 first.
- by move=> k; exists (k, O), O.
- apply/trivIsetP => i j _ _ ij.
rewrite predeqE => -[n m] /=; split => //= -[] [_] _ [<-{n} _].
by move=> [m' _] [] /esym/eqP; rewrite (negbTE ij).
- by move=> /= [n m]; apply/measure_ge0; exact: (cover_measurable (PG n).1).
rewrite (_ : setT = id @` xpredT); last first.
by rewrite image_id funeqE => x; rewrite trueE.
rewrite csum_image //; last by move=> n _; apply: csum_ge0.
apply eq_ereal_pseries => /= j.
pose x_j : nat -> nat * nat := fun y => (j, y).
have [enux injx] : enumeration (J j) x_j /\ injective x_j.
by split => [|x y [] //]; rewrite /enumeration predeqE=> -[? ?]; split.
rewrite -(@csum_image R _ (mu \o uncurry G) x_j predT) //=; last first.
by move=> x _; move: (muG_ge0 (j, x)).
by congr csum; rewrite predeqE => -[a b]; split; move=> [i _ <-]; exists i.
apply lee_lim.
- apply: is_cvg_ereal_nneg_series => n _.
by apply: ereal_nneg_series_lim_ge0 => m _; exact: (muG_ge0 (n, m)).
- by apply: is_cvg_ereal_nneg_series => n _; apply: adde_ge0 => //;
[exact: mu_ext_ge0 | rewrite lee_fin // divr_ge0 // ler0n].
- by near=> n; apply: lee_sum => i _; exact: (PG i).2.
Grab Existential Variables. all: end_near. Qed.

End measure_extension.

Canonical outer_measure_of_measure (R : realType) (T : ringOfSetsType)
(mu : {measure set T -> \bar R}) : {outer_measure set T -> \bar R} :=
OuterMeasure (OuterMeasure.Axioms (mu_ext0 mu) (mu_ext_ge0 mu)
(le_mu_ext mu) (mu_ext_sigma_subadditive mu)).
(* /NB: PR in progress *)

(* NB: PR to MathComp in progress *)
Lemma natr_absz (R : numDomainType) i : `|i|%:R = `|i|%:~R :> R.
Proof. by rewrite -abszE. Qed.
Expand Down Expand Up @@ -551,11 +349,6 @@ rewrite /seqDU 2!setDE !setIA setIC (bigD1 (Ordinal ij)) //=.
by rewrite setCU setIAC !setIA setICl !set0I.
Qed.

(* TODO: remove *)
Lemma trivIset_setIC T I (D : set I) (F : I -> set T) X :
trivIset D (fun i => F i `&` X) = trivIset D (fun i => X `&` F i).
Proof. by under eq_fun do rewrite setIC. Qed.

Lemma lim_mkord (R : realType) (f : (\bar R)^nat) :
lim (fun n => \sum_(k < n) f k)%E = \sum_(k <oo) f k.
Proof.
Expand Down Expand Up @@ -702,7 +495,7 @@ have ddelta (D : set T) : d<<G>> D -> dynkin (delta D).
by move=> dGEDD S /= [+ GS] => dS; apply/(dynkinC dS); exact: dGEDD.
- move=> F tF deltaDF; rewrite /delta /= => S /= [dS GS].
rewrite bigcup_distrl; apply (dynkinU dS) => //.
by rewrite trivIset_setIC; exact: trivIset_setI.
by under eq_fun do rewrite setIC; exact: trivIset_setI.
by move=> n; apply: (deltaDF n).
have GdG : G `<=` d<< G >> by move=> ? ? ? [_]; apply.
have Gdelta : forall A, G A -> G `<=` delta A.
Expand Down Expand Up @@ -4537,7 +4330,7 @@ apply lee_lim.
rewrite {2}Fkj big_mkord le_sum_measure_bigcup//.
+ by move=> i; apply: measurableI => //; exact/measurable_itv.
+ by rewrite -Fkj.
+ by rewrite trivIset_setIC; exact: trivIset_setI.
+ by under eq_fun do rewrite setIC; exact: trivIset_setI.
Grab Existential Variables. all: end_near. Qed.

Definition slength_measure : {measure set (sset_algebraOfSetsType R) -> \bar R} :=
Expand Down Expand Up @@ -4585,11 +4378,6 @@ Qed.

End lebesgue_measure.

(* PR in progress *)
Definition measurable_fun (T U : measurableType) (D : set T) (f : T -> U) : Prop :=
forall Y, measurable Y -> measurable ((f @^-1` Y) `&` D).
(* /PR in progress *)

Lemma bigcup_setU (T I : Type) (P : set I) (F G : I -> set T) :
\bigcup_(i in P) (F i `|` G i) = (\bigcup_(i in P) F i) `|` (\bigcup_(i in P) G i).
Proof.
Expand Down

0 comments on commit e3d8044

Please sign in to comment.