Skip to content

Commit

Permalink
minor cleaning
Browse files Browse the repository at this point in the history
  • Loading branch information
affeldt-aist committed Sep 22, 2022
1 parent 8eb7192 commit d934def
Show file tree
Hide file tree
Showing 3 changed files with 124 additions and 160 deletions.
109 changes: 68 additions & 41 deletions theories/kernel.v
Original file line number Diff line number Diff line change
Expand Up @@ -314,8 +314,8 @@ Definition finite_measure d (T : measurableType d) (R : realType)

Definition sfinite_measure d (T : measurableType d) (R : realType)
(mu : set T -> \bar R) :=
exists2 mu_ : {measure set T -> \bar R}^nat,
forall n, finite_measure (mu_ n) & forall U, measurable U -> mu U = mseries mu_ 0 U.
exists2 s : {measure set T -> \bar R}^nat,
forall n, finite_measure (s n) & forall U, measurable U -> mu U = mseries s 0 U.

Lemma finite_measure_sigma_finite d (T : measurableType d) (R : realType)
(mu : {measure set T -> \bar R}) :
Expand All @@ -337,49 +337,47 @@ Variable (mf : measurable_fun setT f).
Lemma sfinite_fubini :
\int[m1]_x \int[m2]_y f (x, y) = \int[m2]_y \int[m1]_x f (x, y).
Proof.
have [m1_ fm1 m1E] := sfm1.
have [m2_ fm2 m2E] := sfm2.
rewrite [LHS](eq_measure_integral [the measure _ _ of mseries m1_ 0]); last first.
have [s1 fm1 m1E] := sfm1.
have [s2 fm2 m2E] := sfm2.
rewrite [LHS](eq_measure_integral [the measure _ _ of mseries s1 0]); last first.
by move=> A mA _; rewrite m1E.
transitivity (\int[[the measure _ _ of mseries m1_ 0]]_x
\int[[the measure _ _ of mseries m2_ 0]]_y f (x, y)).
by apply eq_integral => x _; apply: eq_measure_integral => U mA _; rewrite m2E.
transitivity (\sum_(n <oo) \int[m1_ n]_x \sum_(m <oo) \int[m2_ m]_y f (x, y)).
transitivity (\int[mseries s1 0]_x \int[mseries s2 0]_y f (x, y)).
by apply eq_integral => x _; apply: eq_measure_integral => ? ? _; rewrite m2E.
transitivity (\sum_(n <oo) \int[s1 n]_x \sum_(m <oo) \int[s2 m]_y f (x, y)).
rewrite ge0_integral_measure_series; [|by []| |]; last 2 first.
by move=> t _; exact: integral_ge0.
rewrite [X in measurable_fun _ X](_ : _ =
fun x => \sum_(n <oo) \int[m2_ n]_y f (x, y)); last first.
fun x => \sum_(n <oo) \int[s2 n]_y f (x, y)); last first.
apply/funext => x.
by rewrite ge0_integral_measure_series//; exact/measurable_fun_prod1.
apply: ge0_emeasurable_fun_sum; first by move=> k x; exact: integral_ge0.
move=> k; apply: measurable_fun_fubini_tonelli_F => //=.
exact: finite_measure_sigma_finite.
apply: eq_nneseries => n _; apply eq_integral => x _.
by rewrite ge0_integral_measure_series//; exact/measurable_fun_prod1.
transitivity (\sum_(n <oo) \sum_(m <oo) \int[m1_ n]_x \int[m2_ m]_y f (x, y)).
transitivity (\sum_(n <oo) \sum_(m <oo) \int[s1 n]_x \int[s2 m]_y f (x, y)).
apply eq_nneseries => n _.
rewrite integral_sum//.
move=> m; apply: measurable_fun_fubini_tonelli_F => //=.
exact: finite_measure_sigma_finite.
by move=> m x _; exact: integral_ge0.
transitivity (\sum_(n <oo) \sum_(m <oo) \int[m2_ m]_y \int[m1_ n]_x f (x, y)).
transitivity (\sum_(n <oo) \sum_(m <oo) \int[s2 m]_y \int[s1 n]_x f (x, y)).
apply eq_nneseries => n _; apply eq_nneseries => m _.
by rewrite fubini_tonelli//; exact: finite_measure_sigma_finite.
transitivity (\sum_(n <oo) \int[[the measure _ _ of mseries m2_ 0]]_y \int[m1_ n]_x f (x, y)).
transitivity (\sum_(n <oo) \int[mseries s2 0]_y \int[s1 n]_x f (x, y)).
apply eq_nneseries => n _ /=. rewrite ge0_integral_measure_series//.
by move=> y _; exact: integral_ge0.
apply: measurable_fun_fubini_tonelli_G => //=.
by apply: finite_measure_sigma_finite; exact: fm1.
transitivity (\int[[the measure _ _ of mseries m2_ 0]]_y \sum_(n <oo) \int[m1_ n]_x f (x, y)).
transitivity (\int[mseries s2 0]_y \sum_(n <oo) \int[s1 n]_x f (x, y)).
rewrite integral_sum//.
move=> n; apply: measurable_fun_fubini_tonelli_G => //=.
by apply: finite_measure_sigma_finite; exact: fm1.
by move=> n y _; exact: integral_ge0.
transitivity (\int[[the measure _ _ of mseries m2_ 0]]_y
\int[[the measure _ _ of mseries m1_ 0]]_x f (x, y)).
transitivity (\int[mseries s2 0]_y \int[mseries s1 0]_x f (x, y)).
apply eq_integral => y _.
by rewrite ge0_integral_measure_series//; exact/measurable_fun_prod2.
transitivity (\int[m2]_y \int[mseries m1_ 0]_x f (x, y)).
transitivity (\int[m2]_y \int[mseries s1 0]_x f (x, y)).
by apply eq_measure_integral => A mA _ /=; rewrite m2E.
by apply eq_integral => y _; apply eq_measure_integral => A mA _ /=; rewrite m1E.
Qed.
Expand Down Expand Up @@ -867,34 +865,21 @@ Arguments measurable_fun_xsection_integral {_ _ _ _ _} k l.
Arguments measurable_fun_integral_finite_kernel {_ _ _ _ _} k l.
Arguments measurable_fun_integral_sfinite_kernel {_ _ _ _ _} k l.

Section kprobability.
Variables (d d' : _) (X : measurableType d) (Y : measurableType d').
Variables (R : realType) (P : probability Y R).

Definition kprobability : X -> {measure set Y -> \bar R} := fun=> P.

Let measurable_fun_kprobability U : measurable U ->
measurable_fun setT (kprobability ^~ U).
Proof. by move=> mU; exact: measurable_fun_cst. Qed.

HB.instance Definition _ :=
@isKernel.Build _ _ X Y R kprobability measurable_fun_kprobability.
Section pdirac.
Variables (d : _) (T : measurableType d) (R : realType).

Let kprobability_prob x : kprobability x setT = 1.
Proof. by rewrite /kprobability/= probability_setT. Qed.

HB.instance Definition _ :=
@Kernel_isProbability.Build _ _ X Y R kprobability kprobability_prob.
HB.instance Definition _ x :=
isProbability.Build _ _ _ (@dirac _ T x R) (diracT R x).

End kprobability.
End pdirac.

Section kdirac.
Variables (d d' : _) (X : measurableType d) (Y : measurableType d').
Variables (R : realType) (f : X -> Y).

Definition kdirac (mf : measurable_fun setT f)
: X -> {measure set Y -> \bar R} :=
fun x : X => [the measure _ _ of dirac (f x)].
fun x => [the measure _ _ of dirac (f x)].

Hypothesis mf : measurable_fun setT f.

Expand All @@ -917,6 +902,49 @@ HB.instance Definition _ := Kernel_isProbability.Build _ _ _ _ _
End kdirac.
Arguments kdirac {d d' X Y R f}.

Section dist_salgebra_instance.
Variables (d : measure_display) (T : measurableType d) (R : realType).

Let p0 : probability T R := [the probability T R of @dirac d T point R].

Definition prob_pointed := Pointed.Class
(Choice.Class gen_eqMixin (Choice.Class gen_eqMixin gen_choiceMixin)) p0.

Canonical probability_eqType := EqType (probability T R) prob_pointed.
Canonical probability_choiceType := ChoiceType (probability T R) prob_pointed.
Canonical probability_ptType := PointedType (probability T R) prob_pointed.

Definition mset (U : set T) (r : R) := [set mu : probability T R | mu U < r%:E].

Definition pset : set (set (probability T R)) :=
[set mset U r | r in `[0%R,1%R]%classic & U in @measurable d T].

Definition pprobability := [the measurableType pset.-sigma of salgebraType pset].

End dist_salgebra_instance.

Section kprobability.
Variables (d d' : _) (X : measurableType d) (Y : measurableType d').
Variables (R : realType) (P : probability Y R).

Definition kprobability
: X -> {measure set Y -> \bar R} := fun=> P.

Let measurable_fun_kprobability U : measurable U ->
measurable_fun setT (kprobability ^~ U).
Proof. by move=> mU; exact: measurable_fun_cst. Qed.

HB.instance Definition _ :=
@isKernel.Build _ _ X Y R kprobability measurable_fun_kprobability.

Let kprobability_prob x : kprobability x setT = 1.
Proof. by rewrite /kprobability/= probability_setT. Qed.

HB.instance Definition _ :=
@Kernel_isProbability.Build _ _ X Y R kprobability kprobability_prob.

End kprobability.

Section kadd.
Variables (d d' : _) (X : measurableType d) (Y : measurableType d').
Variables (R : realType) (k1 k2 : R.-ker X ~> Y).
Expand Down Expand Up @@ -1041,12 +1069,11 @@ Qed.
Let mnormalize_ge0 x U : 0 <= mnormalize x U.
Proof. by rewrite /mnormalize; case: ifPn => //; case: ifPn. Qed.

Lemma mnormalize_sigma_additive x : semi_sigma_additive (mnormalize x).
Let mnormalize_sigma_additive x : semi_sigma_additive (mnormalize x).
Proof.
move=> F mF tF mUF; rewrite /mnormalize/=.
case: ifPn => [_|_].
exact: measure_semi_sigma_additive.
rewrite (_ : (fun n => _) = ((fun n => \sum_(0 <= i < n) f x (F i)) \*
case: ifPn => [_|_]; first exact: measure_semi_sigma_additive.
rewrite (_ : (fun _ => _) = ((fun n => \sum_(0 <= i < n) f x (F i)) \*
cst ((fine (f x setT))^-1)%:E)); last first.
by apply/funext => n; rewrite -ge0_sume_distrl.
by apply: ereal_cvgMr => //; exact: measure_semi_sigma_additive.
Expand All @@ -1055,7 +1082,7 @@ Qed.
HB.instance Definition _ x := isMeasure.Build _ _ _ (mnormalize x)
(mnormalize0 x) (mnormalize_ge0 x) (@mnormalize_sigma_additive x).

Lemma mnormalize1 x : mnormalize x setT = 1.
Let mnormalize1 x : mnormalize x setT = 1.
Proof.
rewrite /mnormalize; case: ifPn; first by rewrite probability_setT.
rewrite negb_or => /andP[ft0 ftoo].
Expand Down
Loading

0 comments on commit d934def

Please sign in to comment.