Skip to content

Commit

Permalink
Merge pull request #353 from math-comp/measure_20210324
Browse files Browse the repository at this point in the history
Caratheodory theorem
  • Loading branch information
CohenCyril authored Apr 25, 2021
2 parents 3c1ec92 + 6c02a15 commit c1abd7f
Show file tree
Hide file tree
Showing 4 changed files with 324 additions and 32 deletions.
16 changes: 14 additions & 2 deletions CHANGELOG_UNRELEASED.md
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,7 @@
## [Unreleased]

### Added

- in `ereal.v`:
+ lemmas `big_nat_widenl`, `big_geq_mkord`
+ lemmas `lee_sum_nneg_natr`, `lee_sum_nneg_natl`
Expand All @@ -12,6 +12,18 @@
+ lemmas `ereal_pseries_sum_nat`, `lte_lim`
+ lemmas `is_cvg_ereal_nneg_natsum_cond`, `is_cvg_ereal_nneg_natsum`
+ lemma `ereal_pseriesD`, `ereal_pseries0`, `eq_ereal_pseries`
- in `classical_sets.v`, lemma `subset_bigsetU_cond`
- in `measure.v`:
+ lemma `eq_bigcupB_of_bigsetU`
+ definitions `caratheodory_type`
+ definition `caratheodory_measure` and lemma `caratheodory_measure_complete`
+ internal definitions and lemmas that may be deprecated and hidden in the future:
* `caratheodory_measurable`, notation `... .-measurable`,
* `le_caratheodory_measurable`, `outer_measure_bigcup_lim`,
`caratheodory_measurable_{set0,setC,setU_le,setU,bigsetU,setI,setD}`
`disjoint_caratheodoryIU`, `caratheodory_additive`,
`caratheodory_lim_lee`, `caratheodory_measurable_trivIset_bigcup`,
`caratheodory_measurable_bigcup`

### Changed

Expand All @@ -24,7 +36,7 @@
* lemmas `ereal_nondecreasing_series`, `ereal_nneg_series_lim_ge`
* lemmas `is_cvg_ereal_nneg_series_cond`, `is_cvg_ereal_nneg_series`
* lemmas `ereal_nneg_series_lim_ge0`, `ereal_nneg_series_pinfty`

- in `classical_sets.v`, lemma `subset_bigsetU`

### Renamed

Expand Down
16 changes: 12 additions & 4 deletions theories/classical_sets.v
Original file line number Diff line number Diff line change
Expand Up @@ -822,11 +822,19 @@ rewrite big_ord_recl /= (IHn (fun i => F i.+1)) predeqE => x; split.
by move=> [[|i] Fi]; [left|right; exists i].
Qed.

Lemma subset_bigsetU m n F : (m <= n)%N ->
\big[setU/set0]_(i < m) F i `<=` \big[setU/set0]_(i < n) F i.
Lemma subset_bigsetU F :
{homo (fun n => \big[setU/set0]_(i < n) F i) : n m / (n <= m)%N >-> n `<=` m}.
Proof.
rewrite !bigcup_ord => mn x [i im ?]; exists i => //.
by rewrite /mkset (leq_trans im).
move=> m n mn; rewrite !bigcup_ord => x [i im Fix].
by exists i => //=; rewrite (leq_trans im).
Qed.

Lemma subset_bigsetU_cond (P : pred nat) F :
{homo (fun n => \big[setU/set0]_(i < n | P i) F i)
: n m / (n <= m)%N >-> n `<=` m}.
Proof.
move=> n m nm; rewrite big_mkcond [in X in _ `<=` X]big_mkcond/=.
exact: (@subset_bigsetU (fun i => if P i then F i else _)).
Qed.

Lemma bigcap_ord n F :
Expand Down
Loading

0 comments on commit c1abd7f

Please sign in to comment.