Skip to content

Commit

Permalink
complete Niven's proof
Browse files Browse the repository at this point in the history
  • Loading branch information
affeldt-aist committed Dec 19, 2024
1 parent 116f9a0 commit 4e298f7
Show file tree
Hide file tree
Showing 10 changed files with 588 additions and 246 deletions.
28 changes: 28 additions & 0 deletions CHANGELOG_UNRELEASED.md
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,34 @@

### Changed

- in `mathcomp_extra.v`:
+ lemmas `prodr_ile1`, `nat_int`

- in `normedtype.v`:
+ lemma `scaler1`

- in `derive.v`:
+ lemmas `horner0_ext`, `hornerD_ext`, `horner_scale_ext`, `hornerC_ext`,
`derivable_horner`, `derivE`, `continuous_horner`
+ instance `is_derive_poly`

- in `lebesgue_integral.v`:
+ lemmas `integral_fin_num_abs`, `Rintegral_cst`, `le_Rintegral`

- new file `pi_irrational.v`:
+ lemmas `measurable_poly`
+ definition `rational`
+ module `pi_irrational`
+ lemma `pi_irrationnal`

### Changed

- in `lebesgue_integrale.v`
+ change implicits of `measurable_funP`

- in `derive.v`:
+ put the notation ``` ^`() ``` and ``` ^`( _ ) ``` in scope `classical_set_scope`

### Renamed

### Generalized
Expand Down
1 change: 1 addition & 0 deletions _CoqProject
Original file line number Diff line number Diff line change
Expand Up @@ -89,6 +89,7 @@ theories/probability.v
theories/convex.v
theories/charge.v
theories/kernel.v
theories/pi_irrational.v
theories/showcase/summability.v
analysis_stdlib/Rstruct_topology.v
analysis_stdlib/showcase/uniform_bigO.v
15 changes: 15 additions & 0 deletions classical/mathcomp_extra.v
Original file line number Diff line number Diff line change
Expand Up @@ -501,6 +501,9 @@ End floor_ceil.
#[deprecated(since="mathcomp-analysis 1.3.0", note="renamed to `ceil_gt_int`")]
Notation ceil_lt_int := ceil_gt_int (only parsing).

Lemma nat_int {R : archiNumDomainType} n : n%:R \is a @Num.int R.
Proof. by rewrite Num.Theory.intrEge0. Qed.

Section bijection_forall.

Lemma bij_forall A B (f : A -> B) (P : B -> Prop) :
Expand Down Expand Up @@ -573,3 +576,15 @@ by apply: contraNeq (disjF _ _ iK jK) _; rewrite -fsetI_eq0 eqFij fsetIid.
Qed.

End FsetPartitions.

(* TODO: move to ssrnum *)
Lemma prodr_ile1 {R : realDomainType} (s : seq R) :
(forall x, x \in s -> 0 <= x <= 1)%R -> (\prod_(j <- s) j <= 1)%R.
Proof.
elim: s => [_ | y s ih xs01]; rewrite ?big_nil// big_cons.
have /andP[y0 y1] : (0 <= y <= 1)%R by rewrite xs01// mem_head.
rewrite mulr_ile1 ?andbT//.
rewrite big_seq prodr_ge0// => x xs.
by have := xs01 x; rewrite inE xs orbT => /(_ _)/andP[].
by rewrite ih// => e xs; rewrite xs01// in_cons xs orbT.
Qed.
1 change: 1 addition & 0 deletions theories/Make
Original file line number Diff line number Diff line change
Expand Up @@ -56,5 +56,6 @@ lebesgue_stieltjes_measure.v
convex.v
charge.v
kernel.v
pi_irrational.v
all_analysis.v
showcase/summability.v
1 change: 1 addition & 0 deletions theories/all_analysis.v
Original file line number Diff line number Diff line change
Expand Up @@ -23,3 +23,4 @@ From mathcomp Require Export lebesgue_stieltjes_measure.
From mathcomp Require Export convex.
From mathcomp Require Export charge.
From mathcomp Require Export kernel.
From mathcomp Require Export pi_irrational.
69 changes: 61 additions & 8 deletions theories/derive.v
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,7 @@ From HB Require Import structures.
From mathcomp Require Import all_ssreflect ssralg ssrnum matrix interval.
From mathcomp Require Import mathcomp_extra boolp classical_sets functions.
From mathcomp Require Import reals signed topology prodnormedzmodule tvs.
From mathcomp Require Import normedtype landau forms.
From mathcomp Require Import normedtype landau forms poly.

(**md**************************************************************************)
(* # Differentiation *)
Expand Down Expand Up @@ -389,8 +389,8 @@ Proof. exact: iterSr. Qed.

End DifferentialR2.

Notation "f ^` ()" := (derive1 f).
Notation "f ^` ( n )" := (derive1n n f).
Notation "f ^` ()" := (derive1 f) : classical_set_scope.
Notation "f ^` ( n )" := (derive1n n f) : classical_set_scope.

Section DifferentialR3.
Variable R : numFieldType.
Expand Down Expand Up @@ -1037,22 +1037,22 @@ Qed.

Lemma deriv1E f x : derivable f x 1 -> 'd f x = ( *:%R^~ (f^`() x)) :> (R -> U).
Proof.
pose d (h : R) := h *: f^`() x.
move=> df; have lin_scal : linear d by move=> ???; rewrite /d scalerDl scalerA.
pose d (h : R) := h *: (f^`() x)%classic.
move=> df; have lin_scal : linear d by move=> ? ? ?; rewrite /d scalerDl scalerA.
pose scallM := GRing.isLinear.Build _ _ _ _ _ lin_scal.
pose scalL : {linear _ -> _} := HB.pack d scallM.
rewrite -/d -[d]/(scalL : _ -> _).
by apply: diff_unique; [apply: scalel_continuous|apply: der1].
Qed.

Lemma diff1E f x :
differentiable f x -> 'd f x = (fun h => h *: f^`() x) :> (R -> U).
differentiable f x -> 'd f x = (fun h => h *: f^`()%classic x) :> (R -> U).
Proof.
pose d (h : R) := h *: 'd f x 1.
move=> df; have lin_scal : linear d by move=> ? ? ?; rewrite /d scalerDl scalerA.
pose scallM := GRing.isLinear.Build _ _ _ _ _ lin_scal.
pose scalL : {linear _ -> _} := HB.pack d scallM.
have -> : (fun h => h *: f^`() x) = scalL by rewrite derive1E'.
have -> : (fun h => h *: f^`()%classic x) = scalL by rewrite derive1E'.
apply: diff_unique; first exact: scalel_continuous.
apply/eqaddoE; have /diff_locally -> := df; congr (_ + _ + _).
by rewrite funeqE => h /=; rewrite -{1}[h]mulr1 linearZ.
Expand Down Expand Up @@ -1635,7 +1635,7 @@ Qed.

Lemma derive1_comp (R : realFieldType) (f g : R -> R) x :
derivable f x 1 -> derivable g (f x) 1 ->
(g \o f)^`() x = g^`() (f x) * f^`() x.
(g \o f)^`() x = g^`()%classic (f x) * f^`()%classic x.
Proof.
move=> /derivable1_diffP df /derivable1_diffP dg.
rewrite derive1E'; last exact/differentiable_comp.
Expand All @@ -1647,3 +1647,56 @@ Qed.
Lemma trigger_derive (R : realType) (f : R -> R) x x1 y1 :
is_derive x (1 : R) f x1 -> x1 = y1 -> is_derive x 1 f y1.
Proof. by move=> Hi <-. Qed.

Section derive_horner.
Variable (R : realFieldType).
Local Open Scope ring_scope.

Lemma horner0_ext : horner (0 : {poly R}) = 0.
Proof. by apply/funext => y /=; rewrite horner0. Qed.

Lemma hornerD_ext (p : {poly R}) r :
horner (p * 'X + r%:P) = horner (p * 'X) + horner (r%:P).
Proof. by apply/funext => y /=; rewrite !(hornerE,fctE). Qed.

Lemma horner_scale_ext (p : {poly R}) :
horner (p * 'X) = (fun x => p.[x] * x)%R.
Proof. by apply/funext => y; rewrite !hornerE. Qed.

Lemma hornerC_ext (r : R) : horner r%:P = cst r.
Proof. by apply/funext => y /=; rewrite !hornerE. Qed.

Lemma derivable_horner (p : {poly R}) x : derivable (horner p) x 1.
Proof.
elim/poly_ind: p => [|p r ih]; first by rewrite horner0_ext.
rewrite hornerD_ext; apply: derivableD.
- rewrite horner_scale_ext/=.
by apply: derivableM; [exact:ih|exact:derivable_id].
- by rewrite hornerC_ext; exact: derivable_cst.
Qed.

Lemma derivE (p : {poly R}) : horner (p^`()) = (horner p)^`()%classic.
Proof.
apply/funext => x; elim/poly_ind: p => [|p r ih].
by rewrite deriv0 hornerC horner0_ext derive1_cst.
rewrite derivD hornerD hornerD_ext.
rewrite derive1E deriveD//; [|exact: derivable_horner..].
rewrite -!derive1E hornerC_ext derive1_cst addr0.
rewrite horner_scale_ext derive1E deriveM//; last exact: derivable_horner.
rewrite derive_id -derive1E -ih derivC horner0 addr0 derivM hornerD !hornerE.
by rewrite derivX hornerE mulr1 addrC mulrC scaler1.
Qed.

Global Instance is_derive_poly (p : {poly R}) (x : R) :
is_derive x (1:R) (horner p) p^`().[x].
Proof.
by apply: DeriveDef; [exact: derivable_horner|rewrite derivE derive1E].
Qed.

Lemma continuous_horner (p : {poly R}) : continuous (horner p).
Proof.
move=> /= x; apply/differentiable_continuous.
exact/derivable1_diffP/derivable_horner.
Qed.

End derive_horner.
Loading

0 comments on commit 4e298f7

Please sign in to comment.