Skip to content

Commit

Permalink
maximal inequality
Browse files Browse the repository at this point in the history
  • Loading branch information
affeldt-aist committed Nov 15, 2023
1 parent c518e2a commit 3edc982
Show file tree
Hide file tree
Showing 7 changed files with 399 additions and 50 deletions.
25 changes: 25 additions & 0 deletions CHANGELOG_UNRELEASED.md
Original file line number Diff line number Diff line change
Expand Up @@ -16,12 +16,37 @@
+ new lemmas `perfect_set2`, and `ent_closure`.
+ lemma `clopen_surj`

- in `ereal.v`:
+ lemmas `ereal_sup_le`, `ereal_inf_le`

- in `normedtype.v`:
+ definition `lower_semicontinuous`
+ lemma `lower_semicontinuousP`

- in `numfun.v`:
+ lemma `patch_indic`

- in `lebesgue_measure.v`
+ lemma `lower_semicontinuous_measurable`

- in `lebesgue_integral.v`:
+ definition `locally_integrable`
+ lemmas `integrable_locally`, `locally_integrableN`, `locally_integrableD`,
`locally_integrableB`
+ definitions `HL_max`, `HL_maximal`
+ lemmas `HL_max_ge0`, `HL_maximal_ge0`, `HL_maximalT_ge0`,
`lower_semicontinuous_HL_maximal`, `measurable_HL_maximal`,
`maximal_inequality`

### Changed

### Renamed

### Generalized

- in `lebesgue_integral.v`
+ `ge0_integral_bigsetU` generalized from `nat` to `eqType`

### Deprecated

### Removed
Expand Down
40 changes: 19 additions & 21 deletions theories/charge.v
Original file line number Diff line number Diff line change
Expand Up @@ -1136,17 +1136,19 @@ Let E m j := is_max_approxRN mu nu m j.

Let int_F_nu m A (mA : measurable A) : \int[mu]_(x in A) F m x <= nu A.
Proof.
rewrite [leLHS](_ : _ = \sum_(j < m.+1) \int[mu]_(x in (A `&` E m j)) F m x);
last first.
rewrite [leLHS](_ : _ =
\sum_(j < m.+1) \int[mu]_(x in (A `&` E m j)) F m x); last first.
rewrite -[in LHS](setIT A) -(bigsetU_is_max_approxRN mu nu m) big_distrr/=.
rewrite (@ge0_integral_bigsetU _ _ _ _ (fun n => A `&` E m n))//.
rewrite -(@big_mkord _ _ _ m.+1 xpredT (fun i => A `&` is_max_approxRN mu nu m i)).
rewrite ge0_integral_bigsetU ?big_mkord//.
- by move=> n; apply: measurableI => //; exact: measurable_is_max_approxRN.
- by apply: measurable_funTS => //; exact: measurable_max_approxRN_seq.
- by move=> ? ?; exact: max_approxRN_seq_ge0.
- exact: iota_uniq.
- apply: trivIset_setIl; apply: (@sub_trivIset _ _ _ setT (E m)) => //.
exact: trivIset_is_max_approxRN.
rewrite [leLHS](_ : _ = \sum_(j < m.+1) (\int[mu]_(x in (A `&` (E m j))) g j x));
last first.
- by apply: measurable_funTS => //; exact: measurable_max_approxRN_seq.
- by move=> ? ?; exact: max_approxRN_seq_ge0.
rewrite [leLHS](_ : _ =
\sum_(j < m.+1) (\int[mu]_(x in (A `&` (E m j))) g j x)); last first.
apply: eq_bigr => i _; apply:eq_integral => x; rewrite inE => -[?] [] Fmgi h.
by apply/eqP; rewrite eq_le; rewrite /F Fmgi lexx.
rewrite [leRHS](_ : _ = \sum_(j < m.+1) (nu (A `&` E m j))); last first.
Expand Down Expand Up @@ -1582,16 +1584,15 @@ End radon_nikodym.
Notation "'d nu '/d mu" := (Radon_Nikodym mu nu) : charge_scope.

Section radon_nikodym_lemmas.
Context d (T : measurableType d) (R : realType).

Lemma dominates_cscale d (T : measurableType d) (R : realType)
(mu : {sigma_finite_measure set T -> \bar R})
(nu : {charge set T -> \bar R})
(c : R) : nu `<< mu -> cscale c nu `<< mu.
Lemma dominates_cscale (mu : {sigma_finite_measure set T -> \bar R})
(nu : {charge set T -> \bar R}) (c : R) :
nu `<< mu -> cscale c nu `<< mu.
Proof. by move=> numu E mE /numu; rewrite /cscale => ->//; rewrite mule0. Qed.

Lemma Radon_Nikodym_cscale d (T : measurableType d) (R : realType)
(mu : {sigma_finite_measure set T -> \bar R})
(nu : {charge set T -> \bar R}) (c : R) :
Lemma Radon_Nikodym_cscale (mu : {sigma_finite_measure set T -> \bar R})
(nu : {charge set T -> \bar R}) (c : R) :
nu `<< mu ->
ae_eq mu [set: T] ('d [the charge _ _ of cscale c nu] '/d mu)
(fun x => c%:E * 'd nu '/d mu x).
Expand All @@ -1606,17 +1607,14 @@ move=> numu; apply: integral_ae_eq => [//| | |E mE].
by rewrite -Radon_Nikodym_integral.
Qed.

Lemma dominates_caddl d (T : measurableType d)
(R : realType) (mu : {sigma_finite_measure set T -> \bar R})
(nu0 nu1 : {charge set T -> \bar R}) :
nu0 `<< mu -> nu1 `<< mu ->
cadd nu0 nu1 `<< mu.
Lemma dominates_caddl (mu : {sigma_finite_measure set T -> \bar R})
(nu0 nu1 : {charge set T -> \bar R}) :
nu0 `<< mu -> nu1 `<< mu -> cadd nu0 nu1 `<< mu.
Proof.
by move=> nu0mu nu1mu A mA A0; rewrite /cadd nu0mu// nu1mu// adde0.
Qed.

Lemma Radon_Nikodym_cadd d (T : measurableType d) (R : realType)
(mu : {sigma_finite_measure set T -> \bar R})
Lemma Radon_Nikodym_cadd (mu : {sigma_finite_measure set T -> \bar R})
(nu0 nu1 : {charge set T -> \bar R}) :
nu0 `<< mu -> nu1 `<< mu ->
ae_eq mu [set: T] ('d [the charge _ _ of cadd nu0 nu1] '/d mu)
Expand Down
16 changes: 14 additions & 2 deletions theories/ereal.v
Original file line number Diff line number Diff line change
Expand Up @@ -506,6 +506,12 @@ case: xgetP => /=; first by move=> _ -> -[] /ubP geS _; apply geS.
by case: (ereal_supremums_neq0 S) => /= x0 Sx0; move/(_ x0).
Qed.

Lemma ereal_sup_le S x : S !=set0 ->
(forall y, S y -> x <= y) -> x <= ereal_sup S.
Proof.
by case=> y Sy Sx; rewrite (@le_trans _ _ y)//; [exact:Sx|exact:ereal_sup_ub].
Qed.

Lemma ereal_sup_ninfty S : ereal_sup S = -oo <-> S `<=` [set -oo].
Proof.
split.
Expand All @@ -518,14 +524,20 @@ Proof.
by move=> x Sx; rewrite /ereal_inf lee_oppl; apply ereal_sup_ub; exists x.
Qed.

Lemma ereal_inf_le S x : S !=set0 -> (forall y, S y -> y <= x) ->
ereal_inf S <= x.
Proof.
by case=> y Sy Sx; rewrite (@le_trans _ _ y)//; [exact:ereal_inf_lb|exact:Sx].
Qed.

Lemma ereal_inf_pinfty S : ereal_inf S = +oo <-> S `<=` [set +oo].
Proof. rewrite eqe_oppLRP oppe_subset image_set1; exact: ereal_sup_ninfty. Qed.

Lemma le_ereal_sup : {homo @ereal_sup R : A B / A `<=` B >-> A <= B}.
Proof. by move=> A B AB; apply ub_ereal_sup => x Ax; apply/ereal_sup_ub/AB. Qed.
Proof. by move=> A B AB; apply: ub_ereal_sup => x Ax; apply/ereal_sup_ub/AB. Qed.

Lemma le_ereal_inf : {homo @ereal_inf R : A B / A `<=` B >-> B <= A}.
Proof. by move=> A B AB; apply lb_ereal_inf => x Bx; exact/ereal_inf_lb/AB. Qed.
Proof. by move=> A B AB; apply: lb_ereal_inf => x Bx; exact/ereal_inf_lb/AB. Qed.

Lemma hasNub_ereal_sup (A : set (\bar R)) : ~ has_ubound A ->
A !=set0 -> ereal_sup A = +oo%E.
Expand Down
Loading

0 comments on commit 3edc982

Please sign in to comment.