Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Optimize the speed of _compute_3body implementation #283

Merged
merged 15 commits into from
Jul 5, 2024

Conversation

kenko911
Copy link
Contributor

@kenko911 kenko911 commented Jul 5, 2024

Summary

The new implementation of _compute_3body accelerates the calculation of counting 3-body indices. Based on my preliminary benchmarking, the new implementation for simulating thousands of atoms improves by around 15-20% speed compared to the current implementation.

Checklist

  • Google format doc strings added. Check with ruff.
  • Type annotations included. Check with mypy.
  • Tests added for new features/fixes.
  • If applicable, new classes/functions/modules have duecredit @due.dcite decorators to reference relevant papers by DOI (example)

Tip: Install pre-commit hooks to auto-check types and linting before every commit:

pip install -U pre-commit
pre-commit install

@kenko911 kenko911 requested a review from shyuep as a code owner July 5, 2024 17:41
Copy link
Contributor

coderabbitai bot commented Jul 5, 2024

Warning

Review failed

The pull request is closed.

Walkthrough

The _compute_3body function in src/matgl/graph/compute.py has been significantly optimized for performance. Key improvements include the efficient counting of bonds per atom using np.bincount and streamlined generation of triple_bond_indices with numpy operations. The management of three_body_id and max_three_body_id has also been revised for efficiency. Additionally, the return value has been simplified to return only l_g.

Changes

File Change Summary
src/matgl/graph/compute.py Optimized _compute_3body function, removed unnecessary parameters, streamlined return type.

Sequence Diagram(s)

sequenceDiagram
    participant Caller
    participant Compute as compute.py
    
    Caller->>Compute: _compute_3body(g)
    Compute->>Compute: Count bonds per atom using np.bincount
    Compute->>Compute: Generate triple_bond_indices via numpy operations
    Compute->>Compute: Handle three_body_id and max_three_body_id efficiently
    Compute-->>Caller: Return l_g
Loading

Thank you for using CodeRabbit. We offer it for free to the OSS community and would appreciate your support in helping us grow. If you find it useful, would you consider giving us a shout-out on your favorite social media?

Share
Tips

Chat

There are 3 ways to chat with CodeRabbit:

  • Review comments: Directly reply to a review comment made by CodeRabbit. Example:
    • I pushed a fix in commit <commit_id>.
    • Generate unit testing code for this file.
    • Open a follow-up GitHub issue for this discussion.
  • Files and specific lines of code (under the "Files changed" tab): Tag @coderabbitai in a new review comment at the desired location with your query. Examples:
    • @coderabbitai generate unit testing code for this file.
    • @coderabbitai modularize this function.
  • PR comments: Tag @coderabbitai in a new PR comment to ask questions about the PR branch. For the best results, please provide a very specific query, as very limited context is provided in this mode. Examples:
    • @coderabbitai generate interesting stats about this repository and render them as a table.
    • @coderabbitai show all the console.log statements in this repository.
    • @coderabbitai read src/utils.ts and generate unit testing code.
    • @coderabbitai read the files in the src/scheduler package and generate a class diagram using mermaid and a README in the markdown format.
    • @coderabbitai help me debug CodeRabbit configuration file.

Note: Be mindful of the bot's finite context window. It's strongly recommended to break down tasks such as reading entire modules into smaller chunks. For a focused discussion, use review comments to chat about specific files and their changes, instead of using the PR comments.

CodeRabbit Commands (invoked as PR comments)

  • @coderabbitai pause to pause the reviews on a PR.
  • @coderabbitai resume to resume the paused reviews.
  • @coderabbitai review to trigger an incremental review. This is useful when automatic reviews are disabled for the repository.
  • @coderabbitai full review to do a full review from scratch and review all the files again.
  • @coderabbitai summary to regenerate the summary of the PR.
  • @coderabbitai resolve resolve all the CodeRabbit review comments.
  • @coderabbitai configuration to show the current CodeRabbit configuration for the repository.
  • @coderabbitai help to get help.

Additionally, you can add @coderabbitai ignore anywhere in the PR description to prevent this PR from being reviewed.

CodeRabbit Configration File (.coderabbit.yaml)

  • You can programmatically configure CodeRabbit by adding a .coderabbit.yaml file to the root of your repository.
  • Please see the configuration documentation for more information.
  • If your editor has YAML language server enabled, you can add the path at the top of this file to enable auto-completion and validation: # yaml-language-server: $schema=https://coderabbit.ai/integrations/schema.v2.json

Documentation and Community

  • Visit our Documentation for detailed information on how to use CodeRabbit.
  • Join our Discord Community to get help, request features, and share feedback.
  • Follow us on X/Twitter for updates and announcements.

@kenko911 kenko911 merged commit d59abe2 into materialsvirtuallab:main Jul 5, 2024
3 checks passed
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

1 participant