Skip to content

Commit

Permalink
Start work on #6
Browse files Browse the repository at this point in the history
Add new requirements.
Add file for integration test starting from an old implementation
script.
  • Loading branch information
prosku committed Jun 11, 2021
1 parent 111b965 commit 9bf3d09
Show file tree
Hide file tree
Showing 2 changed files with 270 additions and 0 deletions.
12 changes: 12 additions & 0 deletions requirements.txt
Original file line number Diff line number Diff line change
@@ -1,14 +1,26 @@
astroid==2.5.6
attrs==21.2.0
Cartopy==0.19.0.post1
cftime==1.5.0
cycler==0.10.0
iniconfig==1.1.1
isort==5.8.0
kiwisolver==1.3.1
lazy-object-proxy==1.6.0
matplotlib==3.4.2
mccabe==0.6.1
netCDF4==1.5.6
numpy==1.20.3
packaging==20.9
Pillow==8.2.0
pluggy==0.13.1
py==1.10.0
pylint==2.8.3
pyparsing==2.4.7
pyshp==2.1.3
pytest==6.2.4
python-dateutil==2.8.1
Shapely==1.7.1
six==1.16.0
toml==0.10.2
wrapt==1.12.1
258 changes: 258 additions & 0 deletions tests/test_integration-example.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,258 @@
#######################################################
# Spherical harmonics
# Example for the PySphereX package
# 2021 06 11
# author: prosku
#######################################################

#Load packages

import numpy as np
import matplotlib as matplotlib
matplotlib.use('Agg') # https://stackoverflow.com/questions/37604289/tkinter-tclerror-no-display-name-and-no-display-environment-variable
import matplotlib.pyplot as plt
import scipy.special

from netCDF4 import Dataset
import os
#import fnmatch
#import pandas as pd

#Plotting
from cartopy import config
import cartopy.crs as ccrs
import cartopy.feature as cfeature

output_path = ''
variables = ['CDNC', 'ICNC']
varnames = ['CDNC', 'ICNC']
#variables = ['IWP', 'LWP', 'SCRE', 'LCRE', 'CC', 'Prcp_tot', 'CDNC', 'ICNC', 'LCC_MOD', 'ICC_MOD', 'MCC_MOD']
#varnames = ['IWP', 'LWP', 'SCRE', 'LCRE', 'CC', 'Prcp\_tot', 'CDNC', 'ICNC', 'LCC', 'ICC', 'MCC']

def sph_harm_coeff(data, phi, theta, l, m):
"""Calculate sperical harmonics coefficient
Args:
data (ndarray of dim 2): gridded data of shape (theta.size, phi.size)
phi (ndarray): azimuthal angle
theta (ndarray): polar angle
l (int): degree of harmonic l>=0
m (int): order of harmonic |m|<=l
Return:
coeff (float): spherical harmonics coefficient
"""
dphi, dtheta = 2 * np.pi / data.shape[1], np.pi / data.shape[0]
Y = scipy.special.sph_harm(m, l, phi[None,:], theta[:,None])
return dphi * dtheta * np.sum(data * np.sin(theta[:,None]) * np.conj(Y))

def sph_harm_exp(data, phi, theta, L):
"""Calculate spherical harmonics coefficients for l
Args:
data (ndarray of dim 2): gridded data of shape (theta.size, phi.size)
phi (ndarray): azimuthal angle
theta (ndarray): polar angle
L (int): maximum degree of harmonic L>=0
Return:
coeffs (ndarray): spherical harmonics coefficient |m|<=l
"""
res = []
for l in range(L + 1):
coeffs = np.empty(2 * l + 1, dtype=np.complex128)
for i in range(2 * l + 1):
m = i - l
coeffs[i] = sph_harm_coeff(data, phi, theta, l, m)
res.append(coeffs)
return res

def sph_harm_series(coeffs, phi, theta):
"""Reconstruct spherical harmonics series from coefficients
Args:
coeffs (list): list of coefficient arrays
phi (ndarray): azimuthal angle
theta (ndarray): polar angle
Return:
data (ndarray of dim 2): evaluated spherical harmonics expansion
"""
L = len(coeffs)
res = np.zeros((theta.size, phi.size), dtype=np.complex128)
for l in range(L):
for i in range(2 * l + 1):
m = i - l
Y = scipy.special.sph_harm(m, l, phi[None,:], theta[:,None])
res += coeffs[l][i] * Y
return np.real(res)

def sph_harm_spec(data, phi, theta, L):
"""Calculate power spectrum
Args:
data (ndarray of dim 2): gridded data of shape (theta.size, phi.size)
phi (ndarray): azimuthal angle
theta (ndarray): polar angle
L (int): maximum degree of harmonic L>=0
Return:
l, spec (ndarray): degrees of harmonics, power spectrum
"""
coeffs = sph_harm_exp(data, phi, theta, L)
#res = np.array([np.sum(np.abs(c)**2) / (2 * l + 1) for l, c in enumerate(coeffs)])
res = np.array([np.sum(np.abs(c)**2) for l, c in enumerate(coeffs)])
return np.arange(L + 1), res

def sph_harm_norm(data, phi, theta):
"""Calculate sperical harmonics norm
Args:
data (ndarray of dim 2): gridded data of shape (theta.size, phi.size)
phi (ndarray): azimuthal angle
theta (ndarray): polar angle
Return:
coeff (float): spherical harmonics coefficient
"""
dphi, dtheta = 2 * np.pi / data.shape[1], np.pi / data.shape[0]
#Y = scipy.special.sph_harm(m, l, phi[None,:], theta[:,None])
return np.sqrt(dphi * dtheta * np.sum(data * np.sin(theta[:,None]) * data))


def sph_harm_norm_ls(data_ls, phi, theta):
"""Calculate sperical harmonics norm from coefficients
Args:
data (ndarray of dim 2): gridded data of shape (theta.size, phi.size)
phi (ndarray): azimuthal angle
theta (ndarray): polar angle
Return:
coeff (float): spherical harmonics coefficient
"""
coeffs_ls = sph_harm_exp(data_ls, phi, theta, 60)
#dphi, dtheta = 2 * np.pi / data.shape[1], np.pi / data.shape[0]
#Y = scipy.special.sph_harm(m, l, phi[None,:], theta[:,None])
coeffs_squared = [f**2 for f in coeffs_ls]
return np.sqrt(np.sum([np.sum(coeff) for coeff in coeffs_squared]))

def plot_sph_harm(var, ppe_IWP, ctrl_IWP):
data=ppe_IWP[var][0,:,:] #- ctrl_IWP[var][0,:,:] #TODO
coeffs = sph_harm_exp(data, phi, theta, 20)
series = sph_harm_series(coeffs, phi, theta)

fig, axs = plt.subplots(nrows=1, ncols=3, figsize=(6*2,1*1.5), subplot_kw={'projection': ccrs.PlateCarree()})#, gridspec_kw={'hspace': 0.6})

vmin=np.nanmin([data,series])
vmax=np.nanmax([data,series])
vext = np.nanmax([np.abs(vmin), np.abs(vmax)])
print(np.nanmin(data), np.nanmax(data))
if var=='CDNC':
im = axs[0].pcolormesh(lons, lats, data, cmap='RdBu_r', norm=matplotlib.colors.LogNorm(vmin=np.nanmin(data), vmax=np.nanmax(data)))
else:
im = axs[0].pcolormesh(lons, lats, data, cmap='RdBu_r', vmin=-vext, vmax=vext)
axs[0].add_feature(cfeature.NaturalEarthFeature('physical', 'land', '50m', edgecolor='k', facecolor='none'))
#import IPython; IPython.embed()
fig.colorbar(im, ax=axs[0], label=var)
axs[0].set_xlabel('lon')
axs[0].set_ylabel('lat')

im = axs[1].pcolormesh(lons, lats, series, cmap='RdBu_r', vmin=-vext, vmax=vext)
axs[1].set_xlabel('lon')
axs[1].set_ylabel('lat')
axs[1].add_feature(cfeature.NaturalEarthFeature('physical', 'land', '50m', edgecolor='k', facecolor='none'))
fig.colorbar(im, ax=axs[1])

axs[0].set_title('Data')
axs[1].set_title('Reconstructed')

l, spec = sph_harm_spec(data, phi, theta, 20)
spec2 = np.array([np.abs(c[l])**2 for l, c in enumerate(coeffs)])
axs[2].remove()
ax = fig.add_subplot(1,3,3)
ax.plot(l, spec**(1/2), label='all m')
ax.plot(l, spec2**(1/2), label='m=0 only')
#plt.plot(l, 1e4/l**3)
#plt.xscale('log')
ax.set_yscale('log')
ax.set_xlabel('l')
ax.set_ylabel('$\sqrt{|f_l^m|^2}$')
ax.legend()

# Set spacing between plots
plt.subplots_adjust(wspace=0.6)

plt.savefig(output_path+'/geogr_'+var+'.pdf', bbox_inches='tight')

def plot_sph_harm_ls(data):
coeffs = sph_harm_exp(data, phi, theta, 20)
series = sph_harm_series(coeffs, phi, theta)

fig, axs = plt.subplots(nrows=1, ncols=3, figsize=(6*2,1*1.5), subplot_kw={'projection': ccrs.PlateCarree()})#, gridspec_kw={'hspace': 0.8})

vmin=np.nanmin([data,series])
vmax=np.nanmax([data,series])
im = axs[0].pcolormesh(lons, lats, data, cmap='RdBu_r', vmin=vmin, vmax=vmax)
axs[0].add_feature(cfeature.NaturalEarthFeature('physical', 'land', '50m', edgecolor='k', facecolor='none'))
fig.colorbar(im, ax=axs[0])

im = axs[1].pcolormesh(lons, lats, series, cmap='RdBu_r', vmin=vmin, vmax=vmax)
axs[1].add_feature(cfeature.NaturalEarthFeature('physical', 'land', '50m', edgecolor='k', facecolor='none'))
fig.colorbar(im, ax=axs[1])

axs[0].set_title('Data')
axs[1].set_title('Reconstructed')

axs[2].remove()
ax = fig.add_subplot(1,3,3)
l, spec = sph_harm_spec(data, phi, theta, 20)
spec2 = np.array([np.abs(c[l])**2 for l, c in enumerate(coeffs)])
ax.plot(l, spec**(1/2), label='all m')
ax.plot(l, spec2**(1/2), label='m=0 only')
#plt.plot(l, 1e4/l**3)
#plt.xscale('log')
ax.set_yscale('log')
ax.set_xlabel('l')
ax.set_ylabel('$\sqrt{|g_l^m|^2}$')
ax.legend()

# Set spacing between plots
plt.subplots_adjust(wspace=0.6)

plt.savefig(output_path+'/geogr_ls.pdf', bbox_inches='tight')

def alpha_sph_harm_ls(data, data_ls):
# This is the correct way to get a normed land-sea mask
dphi, dtheta = 2 * np.pi / data.shape[1], np.pi / data.shape[0]
data_ls_normed = (data_ls - dphi*dtheta/(4*np.pi)*np.sum(data_ls*np.sin(theta[:,None])))
data_ls_normed = data_ls_normed/sph_harm_norm_ls(data_ls_normed, phi, theta)
coeffs_ls_normed = sph_harm_exp(data_ls_normed, phi, theta, 60)
series_ls_normed = sph_harm_series(coeffs_ls_normed, phi, theta)
coeffs = sph_harm_exp(data, phi, theta, 20)
coeffs_f_g = [f*g for f, g in zip(coeffs, coeffs_ls_normed)]
alpha = np.sum([np.sum(coeff) for coeff in coeffs_f_g])
norm = sph_harm_norm(data, phi, theta)
norm_ls = sph_harm_norm_ls(data_ls_normed, phi, theta)
print(norm, norm_ls, alpha, alpha/(norm*norm_ls))


if __name__ == '__main__':
lons = np.load('data/lons.npy')
lats = np.load('data/lats.npy')

phi, theta = lons / 180 * np.pi, - lats / 180 * np.pi + np.pi / 2
dphi, dtheta = 1.875 * 180 / np.pi, 1.875 * 180 / np.pi

data_ppe = Dataset('')
data_ctrl = Dataset('')
data_ls = Dataset('data/unit.24')['SLF'][:,:]

for var, varnames in zip(variables, varnames):
plot_sph_harm(var, data_ppe, data_ctrl)
print(var)
#alpha_sph_harm_ls(data_ppe[var][0,:,:] - data_ctrl[var][0,:,:], data_ls) #TODO
alpha_sph_harm_ls(data_ppe[var][0,:,:], data_ls)

plot_sph_harm_ls(data_ls)

0 comments on commit 9bf3d09

Please sign in to comment.