-
Notifications
You must be signed in to change notification settings - Fork 126
Mapping Nematus model parameters to S2S
Roman Grundkiewicz edited this page Sep 1, 2017
·
1 revision
S2S Parameter | Value | Nematus Parameter | Explanation |
---|---|---|---|
dim-vocabs | <list> | n_words_src, n_words | Maximum items in vocabulary ordered by rank |
dim-emb | int | dim_word | Size of embedding vector |
dim-rnn | int | dim | Size of rnn hidden state |
enc-type | str | NA | Type of encoder RNN : bidirectional, bi-unidirectional, alternating (s2s) |
enc-cell | str | encoder | Type of RNN cell: gru, lstm, tanh (s2s) |
enc-cell-depth | int | enc_recurrence_transition_depth | Number of tansitional cells in encoder layers (s2s) |
enc-depth | int | enc_depth | Number of encoder layers (s2s) |
dec-cell | str | decoder_deep | Type of RNN cell: gru, lstm, tanh (s2s) |
dec-cell-base-depth | int | dec_base_recurrence_transition_depth | Number of tansitional cells in first decoder layer (s2s) |
dec-cell-high-depth | int | dec_high_recurrence_transition_depth | Number of tansitional cells in next decoder layers (s2s) |
dec-depth | int | dec_depth | Number of decoder layers (s2s) |
skip | NA | Use skip connections (s2s) | |
layer-normalization | bool | layer_normalization | Enable layer normalization |
best-deep | NA | Use WMT-2017-style deep configuration (s2s) | |
special-vocab | NA | Model-specific special vocabulary ids | |
tied-embeddings | bool | tie_decoder_embeddings | Tie target embeddings and output embeddings in output layer |
tied-embeddings-src | bool | Tie source and target embeddings | |
tied-embeddings-all | bool | Tie all embedding layers and output layer |