Skip to content

Commit

Permalink
Input, Reference nodes enabled + memory allocation with undef bound (o…
Browse files Browse the repository at this point in the history
…penvinotoolkit#19)

* Input and Reference node enabled

* upper bound allocation enabled

* fixes after first review

* fixes after second review
  • Loading branch information
Maxim Andronov committed Sep 1, 2021
1 parent 17ab2b8 commit 97336cc
Show file tree
Hide file tree
Showing 23 changed files with 371 additions and 82 deletions.
10 changes: 10 additions & 0 deletions inference-engine/src/mkldnn_plugin/cpu_memory_desc_utils.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -263,6 +263,16 @@ MemoryDescPtr MemoryDescUtils::resetOffset(const MemoryDesc* desc) {
}
}

InferenceEngine::Blob::Ptr MemoryDescUtils::createBlob(const MemoryDesc &memDesc) {
// TODO [DS]: Rewrite when IE is moved to the new TensorDescriptor
InferenceEngine::TensorDesc desc = convertToTensorDesc(memDesc);

desc = InferenceEngine::TensorDesc(desc.getPrecision(), memDesc.getShape().getStaticDims(), desc.getBlockingDesc());
InferenceEngine::Blob::Ptr blob = make_blob_with_precision(desc);
blob->allocate();
return blob;
}

InferenceEngine::Blob::Ptr MemoryDescUtils::interpretAsBlob(const MKLDNNMemory &mem) {
// TODO [DS]: Rewrite when IE is moved to the new TensorDescriptor
auto& memDesc = mem.GetDesc();
Expand Down
9 changes: 8 additions & 1 deletion inference-engine/src/mkldnn_plugin/cpu_memory_desc_utils.h
Original file line number Diff line number Diff line change
Expand Up @@ -78,7 +78,14 @@ class MemoryDescUtils {
static MemoryDescPtr resetOffset(const MemoryDesc* desc);

/**
* @brief Creates InferenceEngine::Blob from MKLDNNMemory
* @brief Creates InferenceEngine::Blob from MemoryDesc
* @param desc MemoryDesc from which will be created InferenceEngine::Blob
* @return pointer to InferenceEngine::Blob
*/
static InferenceEngine::Blob::Ptr createBlob(const MemoryDesc& memDesc);

/**
* @brief Creates InferenceEngine::Blob from MKLDNNMemory with the memory reuse
* @param desc MKLDNNMemory from which will be created InferenceEngine::Blob
* @return pointer to InferenceEngine::Blob
*/
Expand Down
9 changes: 9 additions & 0 deletions inference-engine/src/mkldnn_plugin/cpu_shape.h
Original file line number Diff line number Diff line change
Expand Up @@ -97,10 +97,15 @@ class Shape {
const std::vector<size_t>& getDims() const {
return dims;
}

bool isStatic() const {
return type == ShapeType::Static;
}

bool isDynamic() const {
return type == ShapeType::Dynamic;
}

size_t getRank() const {
return minDims.size();
}
Expand Down Expand Up @@ -143,6 +148,10 @@ class Shape {
return !(*this == rhs);
}

bool hasDefinedUpperBounds() const {
return std::all_of(maxDims.begin(), maxDims.end(), [](size_t dim){ return dim != UNDEFINED_DIM; });
}

enum : size_t {
UNDEFINED_DIM = 0xffffffffffffffff
};
Expand Down
4 changes: 4 additions & 0 deletions inference-engine/src/mkldnn_plugin/mkldnn_edge.h
Original file line number Diff line number Diff line change
Expand Up @@ -68,6 +68,10 @@ class MKLDNNEdge {
MKLDNNEdgePtr getSharedEdge() const;
MKLDNNEdgePtr getSharedEdge(std::nothrow_t) const;

bool canProvideMaxSize() {
return getDesc().getMaxMemSize() != MemoryDesc::UNDEFINED_SIZE;
}

private:
std::string name() const;

Expand Down
30 changes: 22 additions & 8 deletions inference-engine/src/mkldnn_plugin/mkldnn_graph.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -522,6 +522,9 @@ static edge_clusters_t findEdgeClusters(const std::vector<MKLDNNEdgePtr> & graph
edge_cluster_idx_map_t edge_cluster_indices;

for (auto &edge : graphEdges) {
if (!edge->canProvideMaxSize())
continue;

auto edge_it = edge_cluster_indices.find(edge);

if (edge_it != edge_cluster_indices.end())
Expand Down Expand Up @@ -603,7 +606,6 @@ void MKLDNNGraph::AllocateWithReuse() {
int e_finish = edge->getChild()->execIndex;

int64_t e_size = edge->getDesc().getMaxMemSize(); // size in bytes (from the beginning of data to the last element)
//TODO [DS]: phase 2: remove this restriction
if (e_size == MemoryDesc::UNDEFINED_SIZE) {
IE_THROW() << "Can not allocate memory since the size is undefined.";
}
Expand Down Expand Up @@ -683,6 +685,9 @@ void MKLDNNGraph::Allocate() {
// Resolve all other edges with status NotAllocated or in-place
for (auto& node : graphNodes) node->resolveNotAllocatedEdges();

// Create dummy memory with undefined desc
for (auto& edge : graphEdges) edge->allocate();

// Check all getters. Should work.
for (auto& edge : graphEdges) edge->validate();
}
Expand Down Expand Up @@ -738,7 +743,7 @@ void MKLDNNGraph::PullOutputData(BlobMap &out) {

// TODO [DS]: phase 2: remove this blob allocation when possible, i.e. when dynamic ie blob representation becomes available
if (out.find(name) == out.end()) {
out[name] = MemoryDescUtils::interpretAsBlob(intr_blob);
out[name] = MemoryDescUtils::createBlob(intr_blob.GetDesc());
}

// TODO [DS]: is it sill true for the new paradigm?
Expand All @@ -750,7 +755,7 @@ void MKLDNNGraph::PullOutputData(BlobMap &out) {
// TODO [DS]: phase 2: rewrite when dynamic ie blob representation becomes available
// IE_THROW() << "Output blob number of elements is not equal network output number of elements ("
// << ext_blob->size() << "!=" << intr_blob.GetElementsCount() << ").";
out[name] = MemoryDescUtils::interpretAsBlob(intr_blob);
out[name] = MemoryDescUtils::createBlob(intr_blob.GetDesc());
}

auto ext_blob = out.at(name);
Expand All @@ -769,14 +774,19 @@ void MKLDNNGraph::PullOutputData(BlobMap &out) {
if (ext_blob_ptr == intr_blob_ptr) continue;

int MB = intr_blob.GetDims()[0];
int MB_to_process = node->batchToProcess();
int MB_to_process = MB;
// TODO: Should we support InferenceEngine::PluginConfigParams::KEY_DYN_BATCH_LIMIT???
// TODO [DS]: phase 2: should we support this behaviour? Looks obsolete in the dynamic shapes paradigm
if (config.batchLimit)
MB_to_process = std::min<int>(config.batchLimit, MB_to_process);
if (config.batchLimit) {
if (node->isDynamicNode()) {
IE_THROW(NotImplemented) << "[DS] not implemented dynamic batch for node with dynamic shape";
}
MB_to_process = node->batchToProcess();
}

size_t size_to_copy = intr_blob.GetElementsCount() * MB_to_process / MB;

const auto actualDesc = MemoryDescUtils::convertToTensorDesc(node->getParentEdgeAt(0)->getDesc());
const auto actualDesc = MemoryDescUtils::convertToTensorDesc(node->getParentEdgeAt(0)->getMemory().GetDesc());
const auto expectedDesc = ext_blob->getTensorDesc();

// TODO [NM]: need to create universal reorder which will be detect cases when we really need to use it
Expand Down Expand Up @@ -829,7 +839,11 @@ void MKLDNNGraph::Infer(MKLDNNInferRequest* request, int batch) {
ENABLE_CPU_DEBUG_CAP(nd.dumpInputBlobs(node));

OV_ITT_SCOPED_TASK(itt::domains::MKLDNNPlugin, node->profiling.execute);
node->execute(stream);
if (node->isDynamicNode()) {
node->executeDynamic(stream);
} else {
node->execute(stream);
}

ENABLE_CPU_DEBUG_CAP(nd.dumpOutputBlobs(node));
}
Expand Down
18 changes: 16 additions & 2 deletions inference-engine/src/mkldnn_plugin/mkldnn_graph.h
Original file line number Diff line number Diff line change
Expand Up @@ -86,6 +86,20 @@ class MKLDNNGraph {
return outputNodesMap;
}

MKLDNNNodePtr GetInputNodeByName(const std::string &name) {
auto input = inputNodesMap.find(name);
if (input == inputNodesMap.end())
IE_THROW() << "CPU execution graph doesn't contain input node with name: " << name;
return input->second;
}

MKLDNNNodePtr GetOutputNodeByName(const std::string &name) {
auto output = outputNodesMap.find(name);
if (output == outputNodesMap.end())
IE_THROW() << "CPU execution graph doesn't contain output node with name: " << name;
return output->second;
}

bool hasInputWithName(const std::string& name) const {
return inputNodesMap.count(name);
}
Expand Down Expand Up @@ -197,8 +211,6 @@ class MKLDNNGraph {

MKLDNNMemoryPtr memWorkspace;

std::map<std::string, MKLDNNNodePtr> inputNodesMap;
std::map<std::string, MKLDNNNodePtr> outputNodesMap;
std::vector<MKLDNNNodePtr> graphNodes;
std::vector<MKLDNNEdgePtr> graphEdges;

Expand Down Expand Up @@ -227,6 +239,8 @@ class MKLDNNGraph {
friend std::shared_ptr<ngraph::Function> dump_graph_as_ie_ngraph_net(const MKLDNNGraph &graph);

private:
std::map<std::string, MKLDNNNodePtr> inputNodesMap;
std::map<std::string, MKLDNNNodePtr> outputNodesMap;
// these node pointers (from graphNodes) are to avoid regular checking for
// constant node in ExecuteConstantNodesOnly and Infer methods
std::vector<MKLDNNNodePtr> constantGraphNodes;
Expand Down
136 changes: 97 additions & 39 deletions inference-engine/src/mkldnn_plugin/mkldnn_infer_request.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -176,6 +176,7 @@ void MKLDNNPlugin::MKLDNNInferRequest::InferImpl() {

ThrowIfCanceled();

// TODO [DS]: rewrite for dynamic shape
execDataPreprocessing(_inputs);

changeDefaultPtr();
Expand Down Expand Up @@ -207,6 +208,35 @@ std::map<std::string, InferenceEngine::InferenceEngineProfileInfo> MKLDNNPlugin:
return perfMap;
}

void MKLDNNPlugin::MKLDNNInferRequest::createInputBlob(const std::string &name) {
MKLDNNNodeConstPtr inputNode = graph->GetInputNodeByName(name);

if (inputNode->isDynamicNode() && !m_realShapes.count(name)) {
IE_THROW() << "Cannot create blob " << name << " with dynamic shapes";
}

InferenceEngine::TensorDesc origDesc = MemoryDescUtils::convertToTensorDesc(inputNode->getChildEdgesAtPort(0)[0]->getMemory().GetDesc());
InferenceEngine::TensorDesc desc = origDesc;

if (_networkInputs.find(name) != _networkInputs.end()) {
InferenceEngine::Layout l = _networkInputs[name]->getLayout();
InferenceEngine::Precision p = _networkInputs[name]->getPrecision();
InferenceEngine::SizeVector dims = inputNode->isDynamicNode() ? m_realShapes.at(name) : _networkInputs[name]->getTensorDesc().getDims();

desc = InferenceEngine::TensorDesc(p, dims, l);
}

_inputs[name] = make_blob_with_precision(desc);
_inputs[name]->allocate();

// TODO [DS]: enable inplace for dynamic input/output
if (!inputNode->isDynamicNode() &&
origDesc == desc &&
graph->_normalizePreprocMap.find(name) == graph->_normalizePreprocMap.end() && !graph->getProperty().batchLimit) {
externalPtr[name] = _inputs[name]->buffer();
}
}

InferenceEngine::Blob::Ptr MKLDNNPlugin::MKLDNNInferRequest::GetBlob(const std::string& name) {
OV_ITT_SCOPED_TASK(itt::domains::MKLDNNPlugin, "GetBlob");

Expand All @@ -224,26 +254,16 @@ InferenceEngine::Blob::Ptr MKLDNNPlugin::MKLDNNInferRequest::GetBlob(const std::
}

if (_inputs.find(name) == _inputs.end()) {
auto pBlob = graph->getInputBlob(name);
if (!pBlob) {
IE_THROW() << "MKLDNN graph doesn't contain input node with name: " << name;
}

InferenceEngine::TensorDesc desc = pBlob->getTensorDesc();

if (_networkInputs.find(name) != _networkInputs.end()) {
InferenceEngine::Layout l = _networkInputs[name]->getLayout();
InferenceEngine::Precision p = _networkInputs[name]->getPrecision();
InferenceEngine::SizeVector dims = _networkInputs[name]->getTensorDesc().getDims();

desc = InferenceEngine::TensorDesc(p, dims, l);
createInputBlob(name);
}
MKLDNNNodeConstPtr inputNode = graph->GetInputNodeByName(name);
if (inputNode->isDynamicNode()) {
if (!m_realShapes.count(name)) {
IE_THROW() << "Cannot get blob " << name << " which contains dynamic shapes";
}

_inputs[name] = make_blob_with_precision(desc);
_inputs[name]->allocate();
if (pBlob->getTensorDesc() == desc &&
graph->_normalizePreprocMap.find(name) == graph->_normalizePreprocMap.end() && !graph->getProperty().batchLimit) {
externalPtr[name] = _inputs[name]->buffer();
if (_inputs[name]->getTensorDesc().getDims() != m_realShapes.at(name)) {
// TODO [DS]: reshape without reallocate?
createInputBlob(name);
}
}
data = _inputs[name];
Expand All @@ -267,6 +287,10 @@ InferenceEngine::Blob::Ptr MKLDNNPlugin::MKLDNNInferRequest::GetBlob(const std::

if (graph->hasOutputWithName(name)) {
if (_outputs.find(name) == _outputs.end()) {
if (graph->GetOutputNodeByName(name)->isDynamicNode()) {
IE_THROW(NotImplemented) << "[DS] Can't get output blob for dynamic shapes before inference";
}

auto pBlob = graph->getOutputBlob(name);
if (!pBlob) {
IE_THROW() << "MKLDNN graph doesn't contain output node with name: " << name;
Expand Down Expand Up @@ -360,29 +384,37 @@ void MKLDNNPlugin::MKLDNNInferRequest::SetBlob(const std::string& name, const In
// pre-processing
_preProcData[name]->setRoiBlob(data);
} else {
size_t inputSize = foundInput->getTensorDesc().getLayout() != InferenceEngine::Layout::SCALAR
? InferenceEngine::details::product(foundInput->getTensorDesc().getDims())
: 1;
if (dataSize != inputSize) {
IE_THROW() << "Input blob size is not equal network input size ("
<< dataSize << "!=" << inputSize << ").";
auto inputNode = graph->GetInputNodeByName(name);
if (foundInput->getInputData()->getPartialShape().rank().get_length() != data->getTensorDesc().getDims().size()) {
IE_THROW(ParameterMismatch) << "Failed to set input blob. Rank mismatch.";
}

if (foundInput->getTensorDesc().getDims() != data->getTensorDesc().getDims()) {
IE_THROW(ParameterMismatch) << "Failed to set input blob. Dimensions mismatch.";
}
if (foundInput->getInputData()->isDynamic()) {
const auto &newShape = data->getTensorDesc().getDims();
m_realShapes[name] = newShape;
inputNode->resetOutputShape({newShape});
} else {
size_t inputSize = foundInput->getTensorDesc().getLayout() != InferenceEngine::Layout::SCALAR ?
InferenceEngine::details::product(foundInput->getTensorDesc().getDims()) : 1;
if (dataSize != inputSize) {
IE_THROW() << "Input blob size is not equal network input size ("
<< dataSize << "!=" << inputSize << ").";
}

if (data->getTensorDesc().getLayout() != InferenceEngine::Layout::ANY && foundInput->getTensorDesc().getLayout() != InferenceEngine::Layout::ANY &&
foundInput->getTensorDesc().getBlockingDesc() != data->getTensorDesc().getBlockingDesc()) {
IE_THROW(ParameterMismatch) << "Failed to set input blob. Blocking descriptor mismatch.";
}
if (foundInput->getTensorDesc().getDims() != data->getTensorDesc().getDims()) {
IE_THROW(ParameterMismatch) << "Failed to set input blob. Dimensions mismatch.";
}

auto pBlob = graph->getInputBlob(name);
if (!pBlob) {
IE_THROW() << "MKLDNN graph doesn't contain input node with name: " << name;
if (data->getTensorDesc().getLayout() != InferenceEngine::Layout::ANY &&
foundInput->getTensorDesc().getLayout() != InferenceEngine::Layout::ANY &&
foundInput->getTensorDesc().getBlockingDesc() != data->getTensorDesc().getBlockingDesc()) {
IE_THROW(ParameterMismatch) << "Failed to set input blob. Blocking descriptor mismatch.";
}
}

if (data->getTensorDesc() == pBlob->getTensorDesc() &&
// TODO [DS]: enable inplace for dynamic input/output
if (!inputNode->isDynamicNode() &&
data->getTensorDesc() == MemoryDescUtils::convertToTensorDesc(inputNode->getChildEdgesAtPort(0)[0]->getMemory().GetDesc()) &&
graph->_normalizePreprocMap.find(name) == graph->_normalizePreprocMap.end() && !graph->getProperty().batchLimit) {
externalPtr[name] = data->buffer();
} else if (externalPtr.find(name) != externalPtr.end()) {
Expand All @@ -392,6 +424,9 @@ void MKLDNNPlugin::MKLDNNInferRequest::SetBlob(const std::string& name, const In
}
}
if (foundOutput) {
if (foundOutput->isDynamic()) {
IE_THROW(NotImplemented) << "[DS] Can't set dynamic output blob";
}
if (compoundBlobPassed) {
IE_THROW(NotImplemented)
<< "cannot set compound blob: supported only for input pre-processing";
Expand Down Expand Up @@ -435,8 +470,8 @@ static inline void changeEdgePtr(const MKLDNNPlugin::MKLDNNEdgePtr &edge, void *

void MKLDNNPlugin::MKLDNNInferRequest::changeDefaultPtr() {
for (auto& it : externalPtr) {
auto input = graph->inputNodesMap.find(it.first);
if (input != graph->inputNodesMap.end()) {
auto input = graph->GetInputNodesMap().find(it.first);
if (input != graph->GetInputNodesMap().end()) {
if (input->second->getChildEdgeAt(0)->getMemory().GetPrimitive().get_data_handle() == it.second)
continue;
// Input cannot be in-place with other primitives
Expand Down Expand Up @@ -470,7 +505,7 @@ void MKLDNNPlugin::MKLDNNInferRequest::changeDefaultPtr() {
}

MKLDNNNodePtr output;
for (auto& out : graph->outputNodesMap) {
for (auto& out : graph->GetOutputNodesMap()) {
if (out.first == it.first) {
output = out.second;
break;
Expand Down Expand Up @@ -536,3 +571,26 @@ void MKLDNNPlugin::MKLDNNInferRequest::ThrowIfCanceled() const {
_asyncRequest->ThrowIfCanceled();
}
}

// TODO [DS]: analyze performance
// getPartialShape().compatible(newShape)
void MKLDNNPlugin::MKLDNNInferRequest::SetShape(const std::string& name, const InferenceEngine::SizeVector& dims) {
// Check partial shape compatibility
ngraph::PartialShape newShape(dims);
InferenceEngine::InputInfo::Ptr foundInput;
InferenceEngine::DataPtr foundOutput;
if (findInputAndOutputBlobByName(name, foundInput, foundOutput)) {
if (!foundInput->getInputData()->getPartialShape().compatible(newShape))
IE_THROW() << "New shape " << newShape << " for " << name << " is incompatible with original shape "
<< foundInput->getInputData()->getPartialShape();
} else {
IE_THROW(NotImplemented) << "[DS] Can't SetShape for output node";
// if (!foundOutput->getPartialShape().compatible(newShape))
// IE_THROW() << "New shape " << newShape << " for " << name << " is incompatible with original shape " << foundOutput->getPartialShape();
}

m_realShapes[name] = dims;

auto inputNode = graph->GetInputNodeByName(name);
inputNode->resetOutputShape({dims});
}
Loading

0 comments on commit 97336cc

Please sign in to comment.