Skip to content

maciejmajek/Introduction-to-deep-learning

Repository files navigation

Introduction to Deep Learning with DeepDrivePL Image Classification course

12 Modules, 11 Homeworks

  1. Introduction
    • Image representation, color spaces, convolution, morphological operations
    • Preprocessing, Datasets, data visualizations
  2. First CNN training
    • Loss function, linear regression vs classification problem
    • Metrics, Backrpopagation
  3. Neural network construction
    • Activation functions, optimizers
    • Deep double descent
    • LR strategies, Pooling, dropout, normalization
  4. Transfer learning
    • Modern image classification NN
    • Training from scratch vs pretrained model, fine tuning
  5. Data agumentation
    • Augmentation types, geometrical and arithmetical transformations
    • Kornia/Albumentations augmentation
  6. Hyperparameters optimization
    • HPO vs NAS
    • Optuna, Parallel coordinates
  7. Analysis of model output
    • Confusion matrix, layers visualization
    • Occlusion sensitivity, T-SNE, UMAP
    • SmoothGrad, GradCam
  8. Self superviced learning
    • Rotation prediction
    • SESEMI, SimCLR, BYOL
  9. Binary classification
    • Binary vs Multiclass vs Multilabel vs MultiTask
    • Sigmoid vs Softmax
    • Precision & Recall, Balanced Accuracy, PR Curve, ROC, F1
  10. Model optimization
    • AMP, FP32, INT8
    • Pytorch model quantization
    • Pruning, TensorRT
    • Knowledge distillation
  11. Model deployment
    • Gradio, Torch Serve, fastapi
    • Docker
    • Nvidia Triton

About

A 12 module introduction to Deep Learning with DeepDrivePL!

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published