Skip to content

maarten0912/tph-yolov5

 
 

Repository files navigation

TPH-YOLOv5

This repo is the implementation of "TPH-YOLOv5: Improved YOLOv5 Based on Transformer Prediction Head for Object Detection on Drone-Captured Scenarios".
On VisDrone Challenge 2021, TPH-YOLOv5 wins 4th place and achieves well-matched results with 1st place model. image
You can get VisDrone-DET2021: The Vision Meets Drone Object Detection Challenge Results for more information.

Install

$ git clone https://github.com/cv516Buaa/tph-yolov5
$ cd tph-yolov5
$ pip install -r requirements.txt

Convert labels

VisDrone2YOLO_lable.py transfer VisDrone annotiations to yolo labels.
You should set the path of VisDrone dataset in VisDrone2YOLO_lable.py first.

$ python VisDrone2YOLO_lable.py

Inference

val.py runs inference on VisDrone2019-DET-val, using weights trained with TPH-YOLOv5.
(We provide two weights trained by two different models based on YOLOv5l.)

$ python val.py --weights ./weights/yolov5l-xs-1.pt --img 1996 --data ./data/VisDrone.yaml
                                    yolov5l-xs-2.pt
--augment --save-txt  --save-conf --task val --batch-size 8 --verbose --name v5l-xs

image

Ensemble

If you inference dataset with different models, then you can ensemble the result by weighted boxes fusion using wbf.py.
You should set img path and txt path in wbf.py.

$ python wbf.py

Train

train.py allows you to train new model from strach.

$ python train.py --img 1536 --adam --batch 4 --epochs 80 --data ./data/VisDrone.yaml --weights yolov5l.pt --hy data/hyps/hyp.VisDrone.yaml --cfg models/yolov5l-xs-tph.yaml --name v5l-xs-tph

image

Description of TPH-YOLOv5 and citation

If you have any question, please discuss with me by sending email to [email protected]
If you find this code useful please cite:

@inproceedings{zhu2021tph,
  title={TPH-YOLOv5: Improved YOLOv5 Based on Transformer Prediction Head for Object Detection on Drone-captured Scenarios},
  author={Zhu, Xingkui and Lyu, Shuchang and Wang, Xu and Zhao, Qi},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
  pages={2778--2788},
  year={2021}
}

References

Thanks to their great works

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 86.6%
  • Jupyter Notebook 11.9%
  • Other 1.5%