Skip to content
J. S. Kottmann edited this page Jan 4, 2021 · 34 revisions

2020

J. S. Kottmann, P. Schleich, T. Tamayo-Mendoza, A. Aspuru-Guzik. "Reducing Qubit Requirements while Maintaining Numerical Precision for the Variational Quantum Eigensolver: A Basis-Set-Free Approach". J. Phys. Chem. Lett. 2021, 12
(https://doi.org/10.1021/acs.jpclett.0c03410)
arxiv: (https://arxiv.org/abs/2008.02819)

J. S. Kottmann, F. A. Bischoff, E. F. Valeev. "Direct determination of optimal pair-natural orbitals in a real-space representation: The second-order Moller–Plesset energy". The Journal of Chemical Physics 152.7 (2020)
(https://doi.org/10.1063/1.5141880)

F. A. Bischoff. "Structure of the H 3 molecule in a strong homogeneous magnetic field as computed by the Hartree-Fock method using multiresolution analysis". Physical Review A 101.5 (2020): 053413.
(https://doi.org/10.1103/PhysRevA.101.053413)

2019

J. Anderson, R. J. Harrison, H. Sekino, B. Sundahl, G. Beylkin, G. I. Fann, S. R. Jensen, I. Sagert, "On derivatives of smooth functions represented in multiwavelet bases". J. Comp. Phys. X, (2019)
(https://doi.org/10.1016/j.jcpx.2019.100033)

F. A. Bischoff, "Computing accurate molecular properties in real space using multiresolution analysis"
(https://doi.org/10.1016/bs.aiq.2019.04.003)

2017

J. S. Kottmann, F. A. Bischoff, “Coupled-Cluster in Real Space II: CC2 Excited States Using Multiresolution Analysis,” J. Chem. Theory Comput., 13, 5956 (2017).
(https://doi.org/10.1021/acs.jctc.7b00694)

J. S. Kottmann, F. A. Bischoff, “Coupled-Cluster in Real Space I: CC2 Ground State Energies Using Multiresolution Analysis,” J. Chem. Theory Comput., 13, 5945 (2017).
(https://doi.org/10.1021/acs.jctc.7b00695)

2016

R. J. Harrison, G. Beylkin, F. A. Bischoff, J. A. Calvin, G. I. Fann, J. Fosso-Tande, D. Galindo, J. R. Hammond, R. Hartman-Baker, J. C. Hill, J. Jia, J. S. Kottmann, M.-J. Yvonne Ou, J. Pei, L. E. Ratcliff, M. G. Reuter, A. C. Richie-Halford, N. A. Romero, H. Sekino, W. A. Shelton, B. E. Sundahl, W. S. Thornton, E. F. Valeev, Á. Vázquez-Mayagoitia, N. Vence, T. Yanai, and Y. Yokoi, “MADNESS: A Multiresolution, Adaptive Numerical Environment for Scientific Simulation,” Siam J. Sci. Comput., 38, S123 (2016). (https://doi.org/10.1137/15M1026171)

2015

J. S. Kottmann, S. Höfener, and F. A. Bischoff, "Numerically accurate linear response-properties in the configuration-interaction singles (CIS) approximation." [Phys. Chem. Chem. Phys., doi:10.1039/c5cp00345h, (2015)] (http://pubs.rsc.org/en/Content/ArticleLanding/2015/CP/C5CP00345H)

2014

F. A. Bischoff, "Regularizing the molecular potential in electronic structure calculations. I. SCF methods." [J. Chem. Phys. 141, 184105 (2014)] (http://scitation.aip.org/content/aip/journal/jcp/141/18/10.1063/1.4901021)

F. A. Bischoff, "Regularizing the molecular potential in electronic structure calculations. II. Many-body methods." [J. Chem. Phys. 141, 184106 (2014)] (http://scitation.aip.org/content/aip/journal/jcp/141/18/10.1063/1.4901022)

2013

J. Fosso-Tande, R. J. Harrison. "Implicit Solvation Models in a Multiresolution Multiwavelet Basis". Chem. Phys. 561-562, pp. 179-184.

F. A. Bischoff and E. F. Valeev, "Computing molecular correlation energies with guaranteed precision." [J. Chem. Phys. 139, 114106 (2013)] (http://link.aip.org/link/JCPSA6/v139/i11/p114106/s1&Agg=doi)

2012

F. A. Bischoff, R. J. Harrison, and E. F. Valeev, "Computing many-body wave functions with guaranteed precision. First-order Møller-Plesset wave function for the ground state of helium atom." [J. Chem. Phys. 137, 104103 (2012).] (http://link.aip.org/link/JCPSA6/v137/i10/p104103/s1&Agg=doi).

-G. Beylkin, G. Fann, R. J. Harrison, C. Kurcz, L. Monzon. "Multiresolution Representation of Operators with Boundary Conditions on Simple Domains". Appl. Comput. Harmon. Anal. 33, pp. 109-139.

-M. G. Reuter, M. A. Ratner, T. Seideman. "Laser Alignment as a Route to Ultrafast Control of Electron Transport through Junctions". Phys. Rev. A 86, no. 013426.

-N. Vence, R. Harrison, P. Krstic. "Attosecond Electron Dynamics: A Multiresolution Approach". Phys. Rev. A 85, no. 033403.

-M. G. Reuter, J. C. Hill, R. J. Harrison. "Solving PDEs in Irregular Geometries with Multiresolution Methods I: Embedded Dirichlet Boundary Conditions". Comput. Phys. Commun. 183, pp. 1-7.

2010

J. Jia, R. Harrison, G. Fann. "Fast transform from an adaptive multi-wavelet representation to a partial Fourier representation". J. Comput. Phys. 229, pp. 5870-5878.

2009

G. I. Fann, J. Pei, R. J. Harrison, J. Jia, J. Hill, M. Ou, W. Nazarewicz, W. A. Shelton, N. Schunck. "Fast Multiresolution Methods for Density Functional Theory in Nuclear Physics". J. Phys.: Conf. Series 180, no. 012080.

2007

G. Beylkin, R. Cramer, G. Fann, R. J. Harrison. "Multiresolution Separated Representations of Singular and Weakly Singular Operators". Appl. Comput. Harmon. Anal. 23, pp. 235-253.

2004

-R. J. Harrison, G. I. Fann, T. Yanai, Z. Gan, G. Beylkin. "Multiresolution Quantum Chemistry: Basic Theory and Initial Applications". J. Chem. Phys. 121, pp. 11587-11598.

-T. Yanai, G. I. Fann, Z. Gan, R. J. Harrison, G. Beylkin. "Multiresolution Quantum Chemistry in Multiwavelet Bases: Hartree–Fock Exchange". J. Chem. Phys. 121, pp. 6680-6686.

-T. Yanai, G. I. Fann, Z. Gan, R. J. Harrison, G. Beylkin. "Multiresolution Quantum Chemistry in Multiwavelet Bases: Analytic Derivatives for Hartree–Fock and Density Functional Theory". J. Chem. Phys. 121, pp. 2286-2876.

2002

-B. Alpert, G. Beylkin, D. Gines, L. Vozovoi. "Adaptive Solution of Partial Differential Equations in Multiwavelet Bases". J. Comput. Phys. 182, pp. 149-190.