Skip to content

This is a repository about NWPU-MOC dataset and code.

Notifications You must be signed in to change notification settings

lyongo/NWPU-MOC

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

NWPU-MOC dataset and Sample Code


This repo is the official implementation of the paper: NWPU-MOC: A Benchmark for Fine-grained Multi-category Object Counting in Aerial Images.

fig1 fig2

Getting Started

Preparation

  • Installation

    • Clone this repo:

      git clone https://github.com/lyongo/NWPU-MOC.git
      
  • Data Preparation

      -- NWPU-MOC
        ├── annotations
        │   ├── airplane
        │   ├── boat
        │   ├── car
        │   ├── container
        │   ├── farmland
        │   ├── house
        │   ├── industrial
        │   ├── mansion
        │   ├── other
        │   ├── pool
        │   ├── stadium
        │   ├── tree
        │   ├── truck
        │   └── vessel
        │       └── jsons
        │           ├── A0_2020_orth25_0_8_1.json
        │           ├── A0_2020_orth25_0_8_2.json
        │           ├── ...
        │           └── A7_2020_orth25_9_7_4.json
        ├── gt
        │   ├── A0_2020_orth25_0_8_3.npz
        │   ├── A0_2020_orth25_1_10_2.npz
        │   ├── ...
        │   └── A7_2020_orth25_9_7_4.npz
        ├── gt14
        │   ├── A0_2020_orth25_0_8_1.npz
        │   ├── A0_2020_orth25_0_8_2.npz
        │   ├── ...
        │   └── A7_2020_orth25_9_7_4.npz
        ├── ir
        │   ├── A0_2020_ir_0_8_1.png
        │   ├── A0_2020_ir_0_8_2.png
        │   ├── ...
        │   └── A7_2020_ir_9_7_4.png
        ├── rgb
        │   ├── A0_2020_orth25_0_8_1.png
        │   ├── A0_2020_orth25_0_8_2.png
        │   ├── ..
        │   └── A7_2020_orth25_9_7_4.png
        ├── test.txt
        ├── train.txt
        └── val.txt
    

    fig3

    • Modify __C_MOC_RS.DATA_PATH in ./datasets/setting/MOC.py with the your dataset path.

Training

  • Set the parameters in config.py and ./datasets/setting/MOC.py .
  • run python train.py.

Testing

We only provide an example to forward the model on the test set. You may need to modify it to test your models.

  • Run python test.py.

Pre-trained Models

Performance on the validation set

Citation

If you find this project useful for your research, please cite:

@ARTICLE{10410235,
  author={Gao, Junyu and Zhao, Liangliang and Li, Xuelong},
  journal={IEEE Transactions on Geoscience and Remote Sensing}, 
  title={NWPU-MOC: A Benchmark for Fine-grained Multi-category Object Counting in Aerial Images}, 
  year={2024},
  volume={},
  number={},
  pages={1-1},
  doi={10.1109/TGRS.2024.3356492}}

Our code borrows a lot from the C^3 Framework, you may cite:

@article{gao2019c,
  title={C$^3$ Framework: An Open-source PyTorch Code for Crowd Counting},
  author={Gao, Junyu and Lin, Wei and Zhao, Bin and Wang, Dong and Gao, Chenyu and Wen, Jun},
  journal={arXiv preprint arXiv:1907.02724},
  year={2019}
}

About

This is a repository about NWPU-MOC dataset and code.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages