forked from xuewujiao/Paddle
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[PHI] Migrate softplus kernel (PaddlePaddle#47406)
* add extra attr property set * add type_info for all context * add onednn context to all context * fix context compile error * simplify conv kernel args * pass runtime attr into dev_ctx * fix marco error * clear conv_grad_kernel extra args * merge conv_grad_grad into conv_grad * clear conv2d_grad_grad extra attrs * remove redundant imports * migrate softmax * clear yaml and eager extra attr * fix conv1d error * change to thread local * fix npu compile failed * try to fix windows compile failed * add conv2d onednn phi kernel * fix ci bugs (xuewujiao#36) * fix compile bugs (xuewujiao#38) * fix extra input transform bug (xuewujiao#39) * support dynamic created attr (xuewujiao#40) * reset extra info gen code * rm conv_grad_grad kernel * reimpl pass attr adapting * add int attr support * remove vector inputnames creating * merge dev * fix map at error * adjust attribute * adapt funcs to PHI * init * adjust imports * support postops * format codeblocks * revert changes to softmax Co-authored-by: Chen Weihang <[email protected]> Co-authored-by: YuanRisheng <[email protected]>
- Loading branch information
1 parent
c2483af
commit 1831919
Showing
3 changed files
with
100 additions
and
170 deletions.
There are no files selected for viewing
This file was deleted.
Oops, something went wrong.
This file was deleted.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,100 @@ | ||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. | ||
// | ||
// Licensed under the Apache License, Version 2.0 (the "License"); | ||
// you may not use this file except in compliance with the License. | ||
// You may obtain a copy of the License at | ||
// | ||
// http://www.apache.org/licenses/LICENSE-2.0 | ||
// | ||
// Unless required by applicable law or agreed to in writing, software | ||
// distributed under the License is distributed on an "AS IS" BASIS, | ||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
// See the License for the specific language governing permissions and | ||
// limitations under the License. | ||
|
||
#include "paddle/phi/kernels/activation_kernel.h" | ||
|
||
#include "paddle/phi/backends/onednn/onednn_reuse.h" | ||
#include "paddle/phi/core/kernel_registry.h" | ||
|
||
namespace phi { | ||
|
||
template <typename T> | ||
class SoftplusOneDNNHandler | ||
: public funcs::OneDNNHandlerNoCachingT<T, dnnl::binary> { | ||
public: | ||
SoftplusOneDNNHandler(const OneDNNContext& dev_ctx, | ||
const phi::DenseTensor* x, | ||
const float beta) | ||
: funcs::OneDNNHandlerNoCachingT<T, dnnl::binary>(dev_ctx.GetEngine(), | ||
dev_ctx.GetPlace()) { | ||
dnnl::post_ops post_ops; | ||
post_ops.append_eltwise( | ||
1.0f, dnnl::algorithm::eltwise_soft_relu, 0.0f, 0.0f); | ||
if (beta != 1.0f) { | ||
post_ops.append_eltwise( | ||
1.0f, dnnl::algorithm::eltwise_linear, 1.0f / beta, 0.0f); | ||
} | ||
funcs::AppendActivation(dev_ctx, post_ops); | ||
dnnl::primitive_attr attrs; | ||
attrs.set_post_ops(post_ops); | ||
|
||
auto x_tz = phi::vectorize(x->dims()); | ||
auto beta_tz = std::vector<int64_t>(x_tz.size(), 1); | ||
auto beta_md = dnnl::memory::desc(beta_tz, | ||
funcs::OneDNNGetDataType<T>(), | ||
funcs::GetPlainOneDNNFormat(x_tz.size())); | ||
|
||
this->AcquireForwardPrimitiveDescriptor(attrs, | ||
dnnl::algorithm::binary_mul, | ||
x->mem_desc(), | ||
beta_md, | ||
x->mem_desc()); | ||
} | ||
|
||
std::shared_ptr<dnnl::memory> AcquireBetaMemory(const float* beta) { | ||
return this->AcquireMemoryFromPrimitive(this->fwd_pd_->src1_desc(), | ||
funcs::to_void_cast<float>(beta)); | ||
} | ||
}; | ||
|
||
template <typename T, typename Context> | ||
void SoftplusKernel(const Context& dev_ctx, | ||
const DenseTensor& x, | ||
float beta, | ||
float threshold, | ||
DenseTensor* out) { | ||
SoftplusOneDNNHandler<T> handler(dev_ctx, &x, beta); | ||
|
||
auto src_memory_p = handler.AcquireSrcMemory(&x); | ||
auto beta_memory_p = handler.AcquireBetaMemory(&beta); | ||
std::shared_ptr<dnnl::memory> dst_memory_p = nullptr; | ||
if (x.IsSharedBufferWith(*out)) { | ||
dst_memory_p = src_memory_p; | ||
dev_ctx.template Alloc<T>(out); | ||
} else { | ||
dst_memory_p = handler.AcquireDstMemory(out); | ||
} | ||
auto binary_p = handler.AcquireForwardPrimitive(); | ||
|
||
auto& astream = OneDNNContext::tls().get_stream(); | ||
|
||
const std::unordered_map<int, dnnl::memory> args = { | ||
{DNNL_ARG_SRC_0, *src_memory_p}, | ||
{DNNL_ARG_SRC_1, *beta_memory_p}, | ||
{DNNL_ARG_DST, *dst_memory_p}}; | ||
|
||
binary_p->execute(astream, args); | ||
astream.wait(); | ||
|
||
out->set_mem_desc(dst_memory_p->get_desc()); | ||
} | ||
|
||
} // namespace phi | ||
|
||
PD_REGISTER_KERNEL(softplus, | ||
OneDNN, | ||
ONEDNN, | ||
phi::SoftplusKernel, | ||
float, | ||
phi::dtype::bfloat16) {} |