Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

WIP: lotka-volterra sequence learning example #114

Draft
wants to merge 4 commits into
base: dev
Choose a base branch
from
Draft
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
131 changes: 131 additions & 0 deletions example/lotka-volterra.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,131 @@
using LTC
using ModelingToolkit
import Flux: Data.DataLoader
using OrdinaryDiffEq
using DiffEqSensitivity
using DiffEqFlux
using GalacticOptim
using IterTools: ncycle

using Plots

@variables t
D = Differential(t)

function Predator(;name)
vars = @variables population(t)=1.0f0 prey(t)
ps = @parameters α=1.0f0 β=1.0f0
ODESystem([D(population) ~ α*population - β*population*prey], t, vars, ps, name=name)
end
function Prey(;name)
vars = @variables population(t)=1.0f0 predator(t)
ps = @parameters δ=1.0f0 γ=1.0f0
ODESystem([D(population) ~ -δ*population + γ*predator*population], t, vars, ps, name=name)
end
function PPRel(;name)
@named predator = Predator()
@named prey = Prey()
eqs = [
predator.prey ~ prey.population
prey.predator ~ predator.population
]
ODESystem(eqs,t,Num[],Num[],systems=[predator,prey],name=name)
end


function get_data()
@named net = PPRel()
@nonamespace predator = net.predator
@nonamespace prey = net.prey
u0 = [predator.population => 1.2f0, prey.population => 1.5f0]
p = [predator.α => 1.5f0, predator.β => 1.2f0, prey.δ => 3.0f0, prey.γ => 0.8f0]
sys = ModelingToolkit.structural_simplify(net)
prob = ODEProblem(sys,u0,(0.0f0,10.0f0),p)
sol = solve(prob,Tsit5(),saveat=0.1)
@show size(sol)
display(plot(sol))
data_y = [reshape(y,:,1) for y in Flux.unstack(sol,2)]
data_x = data_y
dl = DataLoader((data_x, data_y), batchsize=size(sol,2))
return dl
end

# function get_data_windows(seq_len=20,width=1,batchsize=10)
# @named net = PPRel()
# @nonamespace predator = net.predator
# @nonamespace prey = net.prey
# u0 = [predator.population => 1.2f0, prey.population => 1.5f0]
# p = [predator.α => 1.5f0, predator.β => 1.2f0, prey.δ => 3.0f0, prey.γ => 0.8f0]
# sys = ModelingToolkit.structural_simplify(net)
# prob = ODEProblem(sys,u0,(0.0f0,10.0f0),p)
# sol = solve(prob,Tsit5(),saveat=0.1)
# @show size(sol)
# display(plot(sol))
#
# data_x = [sol[:,s:s+seq_len-1] for s in 1:width:size(sol,2)-seq_len]
# data_x = [data_x[s:s+batchsize-1] for s in 1:length(data_x)-batchsize+1]
# data_x = [Flux.unstack(permutedims(Flux.stack(b,3),[1,3,2]),3) for b in data_x]
# @show size(data_x)
# @show length(data_x)
# @show size(data_x[1])
# @show size(data_x[1][1])
# data_y = [sol[:,s:s+seq_len-1] for s in 2:width:size(sol,2)-seq_len+1]
# data_y = [data_y[s:s+batchsize-1] for s in 1:length(data_y)-batchsize+1]
# data_y = [Flux.unstack(permutedims(Flux.stack(b,3),[1,3,2]),3) for b in data_y]
#
# dl = DataLoader((data_x, data_y), batchsize=1, shuffle=true)
# fx,fy = first(dl)
# @show size(fx)
# @show size(fx[1])
# @show size(fx[1][1])
# fig = plot([x[1,1] for x in fx[1]], label="x1")
# plot!(fig, [x[2,1] for x in fx[1]], label="x2")
# plot!(fig, [y[1,1] for y in fy[1]], label="y1")
# plot!(fig, [y[2,1] for y in fy[1]], label="y2")
# display(fig)
# dl
# end
# dl = get_data()
# tx = first(dl)

function train_lv_with_ncp(n, solver=VCABM(), sensealg=InterpolatingAdjoint(autojacvec=ReverseDiffVJP(true));)

cbg = function (p,l,pred,y;doplot=true)
display(l)
if doplot
fig = plot([ŷ[1,1] for ŷ in pred], label="ŷ1")
plot!(fig, [ŷ[2,1] for ŷ in pred], label="ŷ2")
plot!(fig, [yi[1,1] for yi in y], label="y1")
plot!(fig, [yi[2,1] for yi in y], label="y2")
display(fig)
end
return false
end

seq_len=20
width=1
batchsize=10
train_dl = get_data()


wiring = LTC.FWiring(0,2; n_sensory=2, n_inter=4, n_command=2, n_motor=2,)
net = LTC.Net(wiring, name=:net)
sys = ModelingToolkit.structural_simplify(net)

model = DiffEqFlux.FastChain(#(x,p) -> x[1],
LTC.RecurMTK(LTC.MTKCell(wiring.n_in, wiring.n_out, net, sys, solver, sensealg)),
LTC.Mapper(wiring.n_out),
# (x,p) -> [x],
)

opt = Flux.Optimiser(ClipValue(1.00f0), ExpDecay(1f0, 0.1f0, 200, 0.00001f0), ADAM())
# opt = Optim.LBFGS()
# opt = BBO()
# opt = ParticleSwarm(;lower=lb, upper=ub)
# opt = Fminbox(GradientDescent())
AD = GalacticOptim.AutoZygote()
# AD = GalacticOptim.AutoModelingToolkit()
LTC.optimize(model, (p, m, x, y)->LTC.loss_seq(p,m,x,y), cbg, opt, AD, ncycle(train_dl,n)), model
end

@time res1,model = train_lv_with_ncp(1000)