Skip to content

𝐠𝐠𝐯𝐨π₯𝐜 effortlessly translates differential expression datasets and RNAseq data into informative volcano plots. Highlight genes of interest with unprecedented ease. With just a single line of code, visualize complex datasets, gaining deeper insights and simplifying data representation

License

Unknown, MIT licenses found

Licenses found

Unknown
LICENSE
MIT
LICENSE.md
Notifications You must be signed in to change notification settings

loukesio/ggvolc

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

29 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

lifecycle CRAN_Status_Badge License: MIT

Install the ggvolc package

Install the package using the following commands

# for now, you can install the developmental version of ltc
# first you need to install the devtools package 
# in case you have not already installed
install.packages("devtools") 
# and load it
library(devtools)

# then you can install the dev version of the ltc
devtools::install_github("loukesio/ggvolc")
# and load it
library(ggvolc)

How do I start?

Load the library and explore the example datasets!

library(ggvolc)
#> Welcome to ggvolc version 0.1.0 !
#> 
#>                                 888
#>                                 888
#>                                 888
#>  .d88b.   .d88b.  888  888  .d88b.  888  .d8888b
#> d88P"88b d88P"88b 888  888 d88""88b 888 d88P"
#> 888  888 888  888 Y88  88P 888  888 888 888
#> Y88b 888 Y88b 888  Y8bd8P  Y88..88P 888 Y88b.
#>  "Y88888  "Y88888   Y88P    "Y88P"  888  "Y8888P
#>      888      888
#> Y8b d88P Y8b d88P
#>  "Y88P"   "Y88P"
#>
data(all_genes)     # data.frame that contains the output of differentially expressed genes
head(all_genes,5)   # have a look at the first 5 rows 

#>       genes   baseMean log2FoldChange     lfcSE       stat       pvalue
#> 1      GCR1  7201.5782       2.244064 0.2004959  11.192564 4.434241e-29
#> 2     OPI10  1009.4171      -2.257454 0.2096469 -10.767889 4.880607e-27
#> 3      AGA2   249.1173       3.829474 0.3623263  10.569132 4.143136e-26
#> 4 FIM1_1376  5237.5035       2.550409 0.2560379   9.961059 2.256459e-23
#> 5      HMG1 10838.1037       2.214300 0.2229065   9.933763 2.968371e-23
#>           padj
#> 1 2.153711e-25
#> 2 1.185255e-23
#> 3 6.707736e-23
#> 4 2.739905e-20
#> 5 2.883475e-20


data(attention_genes)     # here is a data.frame with genes that I want to mention to the volcano plot
head(attention_genes,5)   # have a look at the first five rows 
#>     genes   baseMean log2FoldChange     lfcSE      stat       pvalue
#> 1   THI13   480.5194       1.585811 0.5219706  3.038122 2.380572e-03
#> 2    FBP1 22710.8428      -2.366733 0.3533032 -6.698871 2.100354e-11
#> 3    TRA1  4491.1343      -1.410696 0.4384316 -3.217595 1.292700e-03
#> 4 YDR222W   591.2289      -4.045918 0.9133881 -4.429572 9.442026e-06
#> 5    BRL1  4434.7712       2.375919 0.5037264  4.716686 2.397176e-06
#>           padj
#> 1 1.371582e-02
#> 2 3.290780e-09
#> 3 8.565681e-03
#> 4 1.819838e-04
#> 5 5.850796e-05

Created on 2023-08-11 with reprex v2.0.2

1. Plot a simple volcano plot!

Install the package using the following commands

ggvolc(all_genes)

2. Add the genes of attention.

ggvolc(all_genes, attention_genes)

3. Add segments to indicate areas of significance.

ggvolc(all_genes, attention_genes, add_seg = TRUE) +
  labs(title="Add segments of significance")

4. Indicate the size of point based on the log2FoldChange column.

ggvolc(all_genes, attention_genes, size_var = "log2FoldChange", add_seg = TRUE)

5. Indicate the size of the point based on the pvalue.

ggvolc(all_genes, attention_genes, size_var = "pvalue", add_seg = TRUE)

6. Add a table with the genes of interest.

plot <- ggvolc(all_genes, attention_genes, add_seg = TRUE) +
  labs(title="Add a table with the genes of interest")

plot %>%
  genes_table(attention_genes)

About

𝐠𝐠𝐯𝐨π₯𝐜 effortlessly translates differential expression datasets and RNAseq data into informative volcano plots. Highlight genes of interest with unprecedented ease. With just a single line of code, visualize complex datasets, gaining deeper insights and simplifying data representation

Topics

Resources

License

Unknown, MIT licenses found

Licenses found

Unknown
LICENSE
MIT
LICENSE.md

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages