Skip to content

loganriggs/sparse_coding

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Work done with Logan Riggs who wrote the original replication notebook. Thanks to Pierre Peigne for the data generating code and Lee Sharkey for answering questions.

Sparse Coding

python replicate_toy_models.py runs code which allows for the replication of the first half of the post Taking features out of superposition with sparse autoencoders.

run.py contains a more flexible set of functions for generating datasets using Pile10k and then running sparse coding activations on real models, incluidng gpt-2-small and custom models.

The repo also contains utils for running code on vast.ai computers which can speed up these sweeps.

## Automatic Interpretation

Currently using OpenAI's automoatic-interpretability repo but can't get it to install so the repo currently works by installing the automatic-interpretability/neuron-explainer/neuron-explainer cloned and saved in the top level of the repo, under the name neuron_explainer.

Training a custom small transformer

The next part of the sparse coding work uses a very small transformer to do some early tests using sparse autoencoders to find features. There doesn't appear to be an open-source model of this kind, and the original model is proprietary, so below are the instructions I followed to create a similar small transformer.

Make sure you have >200GB space. Tested using a vast.ai RTX3090 and pytorch:latest docker image.

git clone https://github.com/karpathy/nanoGPT
cd nanoGPT
python -m venv .env
source .env/bin/activate
apt install -y build-essential
pip install torch numpy transformers datasets tiktoken wandb tqdm

Change config/train_gpt2.py to have:

import time
wandb_project = 'sparsecode'
wandb_run_name = 'supertiny-' + str(time.time())
n_layer = 6 # (same as train_shakespeare and Lee's work)
n_embd = 16 # (same as Lee's)
n_head = 8 # (needs to divide n_embd)
dropout = 0.2 # (used in shakespeare_char)
block_size = 256 # (just to make faster?)
batch_size = 64

To set up the dataset run:

python data/openwebtext/prepare.py

Then if using multiple gpus, run:

torchrun --standalone --nproc_per_node={N_GPU} train.py config/train_gpt2.py

else simply run:

python train.py

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 96.4%
  • Python 3.6%