Skip to content

Official Pytorch implementation of Super Vision Transformer (IJCV)

Notifications You must be signed in to change notification settings

lmbxmu/SuperViT

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

16 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Super Vision Transformer (Link)

Pytorch implementation of our paper "Super Vision Transformer", accepted by International Journal of Computer Vision (IJCV)

Introduction

We present a novel training paradigm that trains only one ViT model at a time, but is capable of providing improved image recognition performance with various computational costs. Here, the trained ViT model, termed super vision transformer (SuperViT), is empowered with the versatile ability of solving incoming patches of multiple sizes as well as preserving informative tokens with multiple keeping rates (the probability of keeping tokens) to achieve a good hardware efficiency for inference.

Pre-trained Models

SuperViT(DeiT-S)

token number\keep ratio 0.5 0.7 1
8x8 73.75 75.28 75.79
10x10 77.32 78.31 78.53
12x12 78.91 79.62 79.87
14x14 79.95 80.50 80.62

SuperViT(LV-ViT-S)

token number\keep ratio 0.5 0.7 1
8x8 76.64 79.82 80.71
10x10 79.81 81.73 82.24
12x12 81.12 82.59 82.94
14x14 82.11 83.15 83.47

Requirements

  • python 3.9.7
  • pytorch 1.10.1
  • torchvision 0.11.2

Data Preparation

  • The ImageNet dataset should be prepared as follows:
ImageNet
├── train
│   ├── folder 1 (class 1)
│   ├── folder 2 (class 1)
│   ├── ...
├── val
│   ├── folder 1 (class 1)
│   ├── folder 2 (class 1)
│   ├── ...

Evaluate Pre-trained Models

  • Evaluate SuperViT(DeiT-S) on ImageNet
python -m torch.distributed.launch --nproc_per_node=4 main_deit.py  --model super_deit_s --batch-size 256 --data-path PATH_TO_IMAGENET --dist-eval --output PATH_TO_LOG --eval --resume PATH_TO_CHECKPOINTS
  • Evaluate SuperViT(LV-ViT-S) on ImageNet
python -m torch.distributed.launch --nproc_per_node=4 main_lvvit.py PATH_TO_IMAGENET --model super_lvvit_s -b 256 --native-amp --drop-path 0.1 --token-label --token-label-data PATH_TO_TOKENLABEL --token-label-size 14 --model-ema --output PATH_TO_LOG --eval --resume PATH_TO_CHECKPOINTS

Train

  • Train SuperViT(DeiT-S) on ImageNet
python -m torch.distributed.launch --nproc_per_node=4 main_deit.py  --model super_deit_s --batch-size 256 --data-path PATH_TO_IMAGENET --dist-eval --output PATH_TO_LOG
  • Train SuperViT(LV-ViT-S) on ImageNet
python -m torch.distributed.launch --nproc_per_node=4 main_lvvit.py PATH_TO_IMAGENET --model super_lvvit_s -b 256 --native-amp --drop-path 0.1 --token-label --token-label-data PATH_TO_TOKENLABEL --token-label-size 14 --model-ema --output PATH_TO_LOG

Acknowledgment

Our code of LV-ViT is from here. Our code of DeiT is from here.

Contact

First author: [email protected]; Second author: [email protected]

About

Official Pytorch implementation of Super Vision Transformer (IJCV)

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages