Skip to content

Official repository for "Latent Diffusion Counterfactual Explanations"

License

Notifications You must be signed in to change notification settings

lmb-freiburg/ldce

Repository files navigation

Latent Diffusion Counterfactual Explanations

This is the official code of the paper Latent Diffusion Counterfactual Explanations.

If this work is useful to you, please consider citing our paper:

@misc{farid2023latent,
    title={Latent Diffusion Counterfactual Explanations}, 
    author={Karim Farid and Simon Schrodi and Max Argus and Thomas Brox},
    year={2023},
    eprint={2310.06668},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

Requirements

A suitable conda environment named ldm can be created and activated with:

conda env create -f environment.yaml
conda activate ldm

Download the following model weights:

Counterfactual generation with LDCE

Before generating counterfactuals, you need to configure the config file in configs/ldce/*.yaml, e.g., set the paths to the dataset etc.

Below we provide the commands to reproduce the results from our paper.

ImageNet

All classes (Table 1)

For class-conditional diffusion model:

python -m scripts.ldce --config-name=v1_wider \
    data.batch_size=5 \
    strength=0.382 \
    data.start_sample=$id data.end_sample=$((id+1)) > logs/imagenet_sd_${id}.log 

For text-conditional diffusion model:

python -m scripts.ldce --config-name=v1_stable_diffusion \
    data.batch_size=4 \
    sampler.classifier_lambda=3.95 \
    sampler.dist_lambda=1.2 \
    sampler.deg_cone_projection=50. \
    data.start_sample=$id data.end_sample=$((id+1)) > logs/imagenet_sd_${id}.log 

Only pairs (Table 2; here exemplary for zebra-sorrel)

For class-conditional diffusion model:

python -m scripts.ldce --config-name=v1_zs \
    data.batch_size=4 > logs/zs_cls.log 

For text-conditional diffusion model:

python -m scripts.ldce --config-name=v1_zs \
    data.batch_size=4 \
    strength=0.382 \
    sampler.classifier_lambda=3.95 \
    sampler.dist_lambda=1.2 \
    sampler.deg_cone_projection=50. \
    diffusion_model.cfg_path="configs/stable-diffusion/v1-inference.yaml" \
    diffusion_model.ckpt_path="/path/to/miniSD.ckpt" > logs/zs_sd.log 

CelebA HQ (Table 6)

python -m scripts.ldce --config-name=v1_celebAHQ \
    data.batch_size=4 \
    sampler.classifier_lambda=4.0 \
    sampler.dist_lambda=3.3 \
    data.num_shards=7 \
    sampler.deg_cone_projection=55. \
    data.shard=$id \
    strength=$strength > logs/celeb_smile.log 

Flowers 102

python -m scripts.ldce --config-name=v1_flowers\
    data.batch_size=4 \
    strength=0.5 \
    sampler.classifier_lambda=3.4 \
    sampler.dist_lambda=1.2 \
    output_dir=results/flowers \
    data.num_shards=7 \
    data.shard=${id} \
     > logs/flowers_${id}.log 

Oxford-IIIT Pets

python -m scripts.ldce --config-name=v1_pets\
    data.batch_size=4 \
    sampler.classifier_lambda=4.2 \
    sampler.dist_lambda=2.4 \
    data.num_shards=7 \
    data.shard=$id \
     > logs/pets_${id}.log 

Acknowledgements

We thank the following GitHub users/researchers/groups:

About

Official repository for "Latent Diffusion Counterfactual Explanations"

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published