Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

build: update llvm tag to 2dde4ba6 #1229

Merged
merged 1 commit into from
Aug 16, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 0 additions & 2 deletions e2e_testing/torchscript/xfail_sets.py
Original file line number Diff line number Diff line change
Expand Up @@ -28,7 +28,6 @@
"ElementwiseBinaryModule_basic",
"ElementwiseSigmoidModule_basic",
"ElementwiseExpModule_basic",
"ElementwiseReluModule_basic",
"ElementwiseFloorModule_basic",
"ElementwiseLogModule_basic",
"ElementwiseBinaryStaticShapeModule_basic",
Expand Down Expand Up @@ -103,7 +102,6 @@
"ElementwiseFlattenBroadcastModule_basic",
"SquareModule_basic",
"MaxPool2dStaticModule_basic",
"ResNet18StaticModule_basic",
"NativeLayerNormModule4D_basic",
"LayerNormNormalizeOverAllDimsModule_basic",
"PermuteModule_basic",
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -516,7 +516,7 @@ struct FoldTensorCastOp : public OpInterfaceRewritePattern<TMTensorOp> {
for (OpOperand *opOperand : op.getInputOperands()) {
auto tensorCastOp = opOperand->get().getDefiningOp<tensor::CastOp>();
newOperands.push_back(canFoldIntoConsumerOp(tensorCastOp)
? tensorCastOp.source()
? tensorCastOp.getSource()
: opOperand->get());
}
// Init tensors may fold, in which case the resultType must also change.
Expand Down
2 changes: 1 addition & 1 deletion externals/llvm-project
Submodule llvm-project updated 3202 files
2 changes: 1 addition & 1 deletion externals/mlir-hlo
Submodule mlir-hlo updated 96 files
+124 −74 BUILD
+0 −1 CMakeLists.txt
+1 −1 README.md
+2 −2 WORKSPACE
+1 −1 build_tools/llvm_version.txt
+1 −0 include/mlir-hlo/Dialect/CMakeLists.txt
+5 −5 include/mlir-hlo/Dialect/gml_st/IR/gml_st_legacy_ops.td
+14 −3 include/mlir-hlo/Dialect/gml_st/IR/gml_st_ops.td
+2 −1 include/mlir-hlo/Dialect/gml_st/IR/gml_st_ops_base.td
+18 −6 include/mlir-hlo/Dialect/gml_st/IR/gml_st_set_ops.td
+0 −3 include/mlir-hlo/Dialect/gml_st/transforms/passes.h
+0 −5 include/mlir-hlo/Dialect/gml_st/transforms/passes.td
+3 −13 include/mlir-hlo/Dialect/mhlo/IR/chlo_ops.h
+2 −1 include/mlir-hlo/Dialect/mhlo/IR/chlo_ops.td
+0 −5 include/mlir-hlo/Dialect/mhlo/IR/hlo_ops.h
+178 −10 include/mlir-hlo/Dialect/mhlo/IR/hlo_ops.td
+98 −4 include/mlir-hlo/Dialect/mhlo/IR/hlo_ops_base.h
+26 −1 include/mlir-hlo/Dialect/mhlo/transforms/legalize_to_linalg_utils.h
+5 −5 include/mlir-hlo/Dialect/mhlo/transforms/map_mhlo_to_scalar_op.h
+5 −0 include/mlir-hlo/Dialect/mhlo/transforms/mhlo_passes.td
+5 −2 include/mlir-hlo/Dialect/mhlo/transforms/passes.h
+15 −0 include/mlir-hlo/Dialect/thlo/CMakeLists.txt
+22 −0 include/mlir-hlo/Dialect/thlo/IR/CMakeLists.txt
+34 −0 include/mlir-hlo/Dialect/thlo/IR/thlo_ops.h
+50 −10 include/mlir-hlo/Dialect/thlo/IR/thlo_ops.td
+4 −4 lib/Analysis/shape_component_analysis.cc
+13 −11 lib/CAPI/Attributes.cc
+1 −0 lib/Dialect/CMakeLists.txt
+226 −610 lib/Dialect/gml_st/IR/gml_st_ops.cc
+0 −1 lib/Dialect/gml_st/transforms/CMakeLists.txt
+6 −8 lib/Dialect/gml_st/transforms/bufferize_tiled_loop.cc
+9 −1 lib/Dialect/gml_st/transforms/fusion.cc
+2 −2 lib/Dialect/lhlo/IR/lhlo_ops.cc
+2 −2 lib/Dialect/lhlo/transforms/lhlo_legalize_to_parallel_loops.cc
+2 −0 lib/Dialect/mhlo/IR/CMakeLists.txt
+7 −7 lib/Dialect/mhlo/IR/chlo_ops.cc
+63 −18 lib/Dialect/mhlo/IR/hlo_ops.cc
+5 −2 lib/Dialect/mhlo/transforms/CMakeLists.txt
+10 −27 lib/Dialect/mhlo/transforms/chlo_legalize_to_hlo.cc
+1 −1 lib/Dialect/mhlo/transforms/hlo_legalize_to_lhlo.cc
+4 −4 lib/Dialect/mhlo/transforms/hlo_legalize_to_memref.cc
+18 −16 lib/Dialect/mhlo/transforms/legalize_mhlo_to_thlo.cc
+65 −74 lib/Dialect/mhlo/transforms/legalize_to_linalg.cc
+2 −2 lib/Dialect/mhlo/transforms/legalize_to_standard.cc
+1 −1 lib/Dialect/mhlo/transforms/legalize_trigonometric_to_approximation.cc
+15 −0 lib/Dialect/thlo/CMakeLists.txt
+33 −0 lib/Dialect/thlo/IR/CMakeLists.txt
+620 −0 lib/Dialect/thlo/IR/thlo_ops.cc
+1 −0 lib/Transforms/CMakeLists.txt
+3 −3 lib/Transforms/buffer_packing.cc
+1 −1 lib/Transforms/copy_removal.cc
+2 −2 lib/Transforms/gml_st_pipeline.cc
+39 −26 tests/Dialect/chlo/chlo_legalize_to_mhlo.mlir
+117 −0 tests/Dialect/gml_st/canonicalize.mlir
+37 −11 tests/Dialect/gml_st/compose_set_ops.mlir
+29 −11 tests/Dialect/gml_st/fusion.mlir
+9 −9 tests/Dialect/gml_st/invalid.mlir
+0 −35 tests/Dialect/gml_st/ops.mlir
+94 −101 tests/Dialect/gml_st/tiling_and_fusion.mlir
+12 −12 tests/Dialect/lhlo/lhlo-fuse-linalg.mlir
+7 −7 tests/Dialect/lhlo/ops.mlir
+6 −6 tests/Dialect/mhlo/canonicalize/canonicalize.mlir
+15 −15 tests/Dialect/mhlo/canonicalize/convolution.mlir
+4 −4 tests/Dialect/mhlo/canonicalize/reshape.mlir
+2 −2 tests/Dialect/mhlo/canonicalize/transpose.mlir
+2 −2 tests/Dialect/mhlo/expand_hlo_tuples.mlir
+4 −4 tests/Dialect/mhlo/group_reduction_dimensions.mlir
+1 −1 tests/Dialect/mhlo/hlo-legalize-gather-to-torch-index-select.mlir
+2 −2 tests/Dialect/mhlo/hlo-legalize-to-lhlo.mlir
+297 −651 tests/Dialect/mhlo/hlo-legalize-to-linalg.mlir
+1 −1 tests/Dialect/mhlo/hlo-legalize-to-memref.mlir
+1 −1 tests/Dialect/mhlo/legalize-control-flow.mlir
+9 −9 tests/Dialect/mhlo/legalize-mhlo-to-thlo.mlir
+15 −15 tests/Dialect/mhlo/lower-general-dot.mlir
+1 −1 tests/Dialect/mhlo/materialize-broadcasts.mlir
+6 −6 tests/Dialect/mhlo/mhlo_canonicalize_reduction.mlir
+53 −0 tests/Dialect/mhlo/mhlo_infer_shape_type_methods.mlir
+1 −1 tests/Dialect/mhlo/mhlo_reduce_pretty_print.mlir
+44 −0 tests/Dialect/mhlo/ops.mlir
+3 −3 tests/Dialect/mhlo/optimize-hlo.mlir
+7 −7 tests/Dialect/mhlo/restrict_max_rank.mlir
+2 −2 tests/Dialect/mhlo/sparse_gendot_lower.mlir
+2 −2 tests/Dialect/mhlo/sparse_lower.mlir
+2 −2 tests/Dialect/mhlo/sparse_transpose.mlir
+20 −20 tests/Dialect/mhlo/symbolic-shape-optimization.mlir
+1 −1 tests/Dialect/mhlo/unfuse_batch_norm.mlir
+49 −0 tests/Dialect/thlo/invalid.mlir
+63 −0 tests/Dialect/thlo/ops.mlir
+48 −0 tests/end2end/gml_st_broadcast.mlir
+40 −0 tests/end2end/gml_st_concat.mlir
+2 −2 tests/end2end/gml_st_transpose.mlir
+86 −180 tests/gml_st_pipeline.mlir
+1 −1 tests/legalize-trigonometric-to-approximation.mlir
+52 −52 tests/rank-specialization.mlir
+3 −3 tests/shape-component-analysis.mlir
+2 −1 tools/mlir-hlo-opt/mlir-hlo-opt.cc
4 changes: 2 additions & 2 deletions lib/Conversion/TorchToLinalg/DataMovement.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -576,7 +576,7 @@ class ConvertAtenViewOp : public OpConversionPattern<AtenViewOp> {
rewriter
.create<tensor::CollapseShapeOp>(loc, intermediateResultType,
castedInput, inputAssociations)
.result();
.getResult();
}

if (llvm::any_of(outputAssociations, [](ReassociationIndices indices) {
Expand All @@ -588,7 +588,7 @@ class ConvertAtenViewOp : public OpConversionPattern<AtenViewOp> {
expandedInput.has_value() ? expandedInput.value()
: castedInput,
outputAssociations)
.result();
.getResult();
}

Value result = collapsedInput.has_value() ? collapsedInput.value()
Expand Down
2 changes: 1 addition & 1 deletion lib/Conversion/TorchToLinalg/Reduction.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -239,7 +239,7 @@ static Value createLinalgPayloadForReduceOp(OpBuilder &b, Location loc,
Value elem = payloadArgs[0];
Value result = payloadArgs[1];
Value self = convertScalarToDtype(b, loc, elem, resultElementType);
auto abs = b.create<math::AbsOp>(loc, self);
auto abs = b.create<math::AbsFOp>(loc, self);
AtenLinalgVectorNormOp::Adaptor adaptor(operands);
Value ord = convertScalarToDtype(b, loc, adaptor.ord(), resultElementType);
auto pow = b.create<math::PowFOp>(loc, abs, ord);
Expand Down
2 changes: 1 addition & 1 deletion lib/Conversion/TorchToLinalg/Uncategorized.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -210,7 +210,7 @@ static Value createLinalgPayloadCalculationForElementwiseOp(
return b.create<arith::OrIOp>(loc, lhsTest, rhsTest);
}
if (isa<AtenAbsOp>(op))
return b.create<math::AbsOp>(loc, payloadArgs[0]);
return b.create<math::AbsFOp>(loc, payloadArgs[0]);
if (isa<AtenSigmoidOp>(op)) {
auto negate = createCalculationForMathOpWithDtypeConversion<arith::NegFOp>(
b, converter, payloadArgs[0], op);
Expand Down
3 changes: 0 additions & 3 deletions lib/Conversion/TorchToMhlo/Basic.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -1063,9 +1063,6 @@ LogicalResult ConvertAtenOp<ValsemVariantAtenUniformOp>::matchAndRewrite(
op.getLoc(),
rewriter.getFloatAttr(inputTy.getElementType(), toDoubleValue));

auto outType = getTypeConverter()
->convertType(op.getType())
.template dyn_cast<TensorType>();
rewriter.replaceOpWithNewOp<mhlo::RngOp>(
op, inputTy, fromTensor, toTensor, mhloShape, mhlo::RngDistribution::UNIFORM);
return success();
Expand Down
2 changes: 1 addition & 1 deletion lib/Conversion/TorchToMhlo/Linear.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -531,7 +531,7 @@ class ConvertAtenConvolutionOp : public OpConversionPattern<AtenConvolutionOp> {
std::copy(outputPadding.begin(), outputPadding.end(),
edgePaddingHighVec.begin() + 2);
Value paddingValue =
mhlo::getConstTensor<float>(rewriter, op, {0.0}, {}).getValue();
mhlo::getConstTensor<float>(rewriter, op, {0.0}, {}).value();
paddingValue = mhlo::promoteType(rewriter, paddingValue, inputTy);
mlir::DenseIntElementsAttr edgePaddingLow =
rewriter.getI64VectorAttr(edgePaddingLowVec);
Expand Down
6 changes: 2 additions & 4 deletions lib/Conversion/TorchToMhlo/Reduction.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -87,11 +87,9 @@ getMaxInDim(ConversionPatternRewriter &rewriter, Operation *op, Value &input,
if (!initValue) return llvm::None;
Value initIndex;
if (mlir::mhlo::kMhloDimSizeBits == 32) {
initIndex =
mhlo::getConstTensor<int32_t>(rewriter, op, {0}, {}).getValue();
initIndex = mhlo::getConstTensor<int32_t>(rewriter, op, {0}, {}).value();
} else {
initIndex =
mhlo::getConstTensor<int64_t>(rewriter, op, {0}, {}).getValue();
initIndex = mhlo::getConstTensor<int64_t>(rewriter, op, {0}, {}).value();
}

DenseIntElementsAttr dimensions = DenseIntElementsAttr::get(
Expand Down
9 changes: 3 additions & 6 deletions lib/Dialect/Torch/Transforms/InlineGlobalSlots.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -94,19 +94,16 @@ static bool isUseTreatedWithValueSemantics(OpOperand &use) {
/// unsafe
class InlineGlobalSlotsAnalysisState : public AnalysisState {
public:
InlineGlobalSlotsAnalysisState(ProgramPoint point) : AnalysisState(point) {}
InlineGlobalSlotsAnalysisState(ProgramPoint point) : AnalysisState(point) {
setSafe();
}

bool isUninitialized() const override {
// We are an optimistic analysis, so we are always default initialized to
// the optimistic "assumed safe" state.
return false;
}

ChangeResult defaultInitialize() override {
// We are an optimistic analysis, so the default state is always "safe".
return setSafe();
}

void print(raw_ostream &os) const override {
os << "InlineGlobalSlotsAnalysisState(" << (isSafe ? "safe" : "unsafe")
<< ")";
Expand Down
12 changes: 6 additions & 6 deletions test/Conversion/TorchToMhlo/basic.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,7 @@
// CHECK-SAME: %[[VAL_0:.*]]: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[?,?],f32> {
// CHECK: %[[VAL_1:.*]] = torch_c.to_builtin_tensor %[[VAL_0]] : !torch.vtensor<[?,?],f32> -> tensor<?x?xf32>
// CHECK: %[[VAL_2:.*]] = torch.constant.none
// CHECK: %[[VAL_3:.*]] = "mhlo.copy"(%[[VAL_1]]) : (tensor<?x?xf32>) -> tensor<?x?xf32>
// CHECK: %[[VAL_3:.*]] = mhlo.copy %[[VAL_1]] : (tensor<?x?xf32>) -> tensor<?x?xf32>
// CHECK: %[[VAL_4:.*]] = torch_c.from_builtin_tensor %[[VAL_3]] : tensor<?x?xf32> -> !torch.vtensor<[?,?],f32>
// CHECK: return %[[VAL_4]] : !torch.vtensor<[?,?],f32>
func.func @torch.aten.clone$basic(%arg0: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[?,?],f32> {
Expand Down Expand Up @@ -47,7 +47,7 @@ func.func @torch.vtensor.literal$signed() -> !torch.vtensor<[2],si64> {
// CHECK: %[[T0:.*]] = torch_c.to_i64 %[[INT1]]
// CHECK: %[[T1:.*]] = tensor.from_elements %[[T0]] : tensor<1xi64>
// CHECK: %[[T2:.*]] = mhlo.convert %[[T1]] : tensor<1xi64>
// CHECK: %[[T3:.*]] = "mhlo.reshape"(%[[T2]]) : (tensor<1xi64>) -> tensor<i64>
// CHECK: %[[T3:.*]] = mhlo.reshape %[[T2]] : (tensor<1xi64>) -> tensor<i64>
// CHECK: %[[T4:.*]] = torch_c.from_builtin_tensor %[[T3]] : tensor<i64> -> !torch.vtensor<[],si64>
// CHECK: return %[[T4]] : !torch.vtensor<[],si64>
func.func @torch.prim.NumToTensor.Scalar$basic() -> !torch.vtensor<[], si64> {
Expand Down Expand Up @@ -229,16 +229,16 @@ func.func @torch.aten.batch_norm$no_bias_weight(%arg0: !torch.vtensor<[?,3,?,?],
// CHECK: %true = torch.constant.bool true
// CHECK: %[[VAL_4:.*]] = torch.prim.ListConstruct %int4, %int5 : (!torch.int, !torch.int) -> !torch.list<int>
// CHECK: %[[VAL_5:.*]] = mhlo.constant dense<[1, 21, 20]> : tensor<3xi64>
// CHECK: %[[VAL_6:.*]] = "mhlo.dynamic_reshape"(%[[VAL_1]], %[[VAL_5]]) : (tensor<3x7x4x5xf32>, tensor<3xi64>) -> tensor<1x21x20xf32>
// CHECK: %[[VAL_6:.*]] = mhlo.dynamic_reshape %[[VAL_1]], %[[VAL_5]] : (tensor<3x7x4x5xf32>, tensor<3xi64>) -> tensor<1x21x20xf32>
// CHECK: %[[VAL_7:.*]] = mhlo.constant dense<1.000000e+00> : tensor<21xf32>
// CHECK: %[[VAL_8:.*]] = mhlo.constant dense<0.000000e+00> : tensor<21xf32>
// CHECK: %[[VAL_9:.*]], %[[VAL_10:.*]], %[[VAL_11:.*]] = "mhlo.batch_norm_training"(%[[VAL_6]], %[[VAL_7]], %[[VAL_8]]) {epsilon = 9.99999974E-6 : f32, feature_index = 1 : i64} : (tensor<1x21x20xf32>, tensor<21xf32>, tensor<21xf32>) -> (tensor<1x21x20xf32>, tensor<21xf32>, tensor<21xf32>)
// CHECK: %[[VAL_12:.*]] = mhlo.constant dense<[3, 7, 4, 5]> : tensor<4xi64>
// CHECK: %[[VAL_13:.*]] = "mhlo.dynamic_reshape"(%[[VAL_9]], %[[VAL_12]]) : (tensor<1x21x20xf32>, tensor<4xi64>) -> tensor<3x7x4x5xf32>
// CHECK: %[[VAL_13:.*]] = mhlo.dynamic_reshape %[[VAL_9]], %[[VAL_12]] : (tensor<1x21x20xf32>, tensor<4xi64>) -> tensor<3x7x4x5xf32>
// CHECK: %[[VAL_14:.*]] = mhlo.constant dense<[3, 7, 1, 1]> : tensor<4xi64>
// CHECK: %[[VAL_15:.*]] = "mhlo.dynamic_reshape"(%[[VAL_10]], %[[VAL_14]]) : (tensor<21xf32>, tensor<4xi64>) -> tensor<3x7x1x1xf32>
// CHECK: %[[VAL_15:.*]] = mhlo.dynamic_reshape %[[VAL_10]], %[[VAL_14]] : (tensor<21xf32>, tensor<4xi64>) -> tensor<3x7x1x1xf32>
// CHECK: %[[VAL_16:.*]] = mhlo.constant dense<[3, 7, 1, 1]> : tensor<4xi64>
// CHECK: %[[VAL_17:.*]] = "mhlo.dynamic_reshape"(%[[VAL_11]], %[[VAL_16]]) : (tensor<21xf32>, tensor<4xi64>) -> tensor<3x7x1x1xf32>
// CHECK: %[[VAL_17:.*]] = mhlo.dynamic_reshape %[[VAL_11]], %[[VAL_16]] : (tensor<21xf32>, tensor<4xi64>) -> tensor<3x7x1x1xf32>
// CHECK: %[[VAL_18:.*]] = "mhlo.broadcast_in_dim"(%[[VAL_3]]) {broadcast_dimensions = dense<[2, 3]> : tensor<2xi64>} : (tensor<4x5xf32>) -> tensor<3x7x4x5xf32>
// CHECK: %[[VAL_19:.*]] = "mhlo.broadcast_in_dim"(%[[VAL_2]]) {broadcast_dimensions = dense<[2, 3]> : tensor<2xi64>} : (tensor<4x5xf32>) -> tensor<3x7x4x5xf32>
// CHECK: %[[VAL_20:.*]] = mhlo.multiply %[[VAL_13]], %[[VAL_18]] : tensor<3x7x4x5xf32>
Expand Down
6 changes: 3 additions & 3 deletions test/Conversion/TorchToMhlo/dropout.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -10,7 +10,7 @@
// CHECK: %[[CST_2:.*]] = arith.constant 1.000000e+00 : f64
// CHECK: %[[CST_3:.*]] = arith.subf %[[CST_2]], %[[ARG1]] : f64
// CHECK: %[[T3:.*]] = tensor.from_elements %[[CST_3]] : tensor<1xf64>
// CHECK: %[[T4:.*]] = "mhlo.reshape"(%[[T3]]) : (tensor<1xf64>) -> tensor<f64>
// CHECK: %[[T4:.*]] = mhlo.reshape %[[T3]] : (tensor<1xf64>) -> tensor<f64>
// CHECK: %[[T5:.*]] = mhlo.convert(%[[ARG0]]) : (tensor<?x?xf32>) -> tensor<?x?xf64>
// CHECK: %[[DIM_0:.*]] = tensor.dim %[[T5]], %[[CST_1]] : tensor<?x?xf64>
// CHECK: %[[CST_I64_0:.*]] = arith.index_cast %[[DIM_0]] : index to i64
Expand All @@ -33,7 +33,7 @@
// CHECK: shape.assuming_yield %[[T19]] : tensor<?x?xf32>
// CHECK: }
// CHECK: %[[T20:.*]] = mhlo.convert(%[[T3]]) : (tensor<1xf64>) -> tensor<1xf32>
// CHECK: %[[T21:.*]] = "mhlo.reshape"(%[[T20]]) : (tensor<1xf32>) -> tensor<f32>
// CHECK: %[[T21:.*]] = mhlo.reshape %[[T20]] : (tensor<1xf32>) -> tensor<f32>
// CHECK: %[[T22:.*]] = shape.shape_of %[[T15]] : tensor<?x?xf32> -> tensor<2xindex>
// CHECK: %[[T23:.*]] = "mhlo.dynamic_broadcast_in_dim"(%[[T21]], %[[T22]]) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>, tensor<2xindex>) -> tensor<?x?xf32>
// CHECK: %[[T24:.*]] = mhlo.multiply %[[T15]], %[[T23]] : tensor<?x?xf32>
Expand All @@ -44,4 +44,4 @@ func.func @torch.aten.native_dropout.train(%arg0: !torch.vtensor<[?,?],f32>, %ar
%bool_true = torch.constant.bool true
%result0, %result1 = torch.aten.native_dropout %arg0, %arg1, %bool_true: !torch.vtensor<[?,?],f32>, !torch.float, !torch.bool -> !torch.vtensor<[?,?],f32>, !torch.vtensor<[?,?],i1>
return %result0, %result1 : !torch.vtensor<[?,?],f32>, !torch.vtensor<[?,?],i1>
}
}
Loading