-
Notifications
You must be signed in to change notification settings - Fork 505
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
add native_dropout and related ops pattern (#1211)
- Loading branch information
1 parent
aeffd16
commit 5771755
Showing
4 changed files
with
97 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,47 @@ | ||
// RUN: torch-mlir-opt < %s --torch-function-to-torch-backend-pipeline --torch-backend-to-mhlo-backend-pipeline -split-input-file -verify-diagnostics | FileCheck %s | ||
|
||
// CHECK-LABEL: func.func @torch.aten.native_dropout.train( | ||
// CHECK-SAME: %[[ARG0:.*]]: tensor<?x?xf32>, %[[ARG1:.*]]: f64) -> (tensor<?x?xf32>, tensor<?x?xi1>) { | ||
// CHECK: %[[T0:.*]] = mhlo.constant dense<1.000000e+00> : tensor<f32> | ||
// CHECK: %[[CST_0:.*]] = arith.constant 1 : index | ||
// CHECK: %[[CST_1:.*]] = arith.constant 0 : index | ||
// CHECK: %[[T1:.*]] = mhlo.constant dense<1.000000e+00> : tensor<f64> | ||
// CHECK: %[[T2:.*]] = mhlo.constant dense<0.000000e+00> : tensor<f64> | ||
// CHECK: %[[CST_2:.*]] = arith.constant 1.000000e+00 : f64 | ||
// CHECK: %[[CST_3:.*]] = arith.subf %[[CST_2]], %[[ARG1]] : f64 | ||
// CHECK: %[[T3:.*]] = tensor.from_elements %[[CST_3]] : tensor<1xf64> | ||
// CHECK: %[[T4:.*]] = "mhlo.reshape"(%[[T3]]) : (tensor<1xf64>) -> tensor<f64> | ||
// CHECK: %[[T5:.*]] = mhlo.convert(%[[ARG0]]) : (tensor<?x?xf32>) -> tensor<?x?xf64> | ||
// CHECK: %[[DIM_0:.*]] = tensor.dim %[[T5]], %[[CST_1]] : tensor<?x?xf64> | ||
// CHECK: %[[CST_I64_0:.*]] = arith.index_cast %[[DIM_0]] : index to i64 | ||
// CHECK: %[[DIM_1:.*]] = tensor.dim %[[T5]], %[[CST_0]] : tensor<?x?xf64> | ||
// CHECK: %[[CST_I64_1:.*]] = arith.index_cast %[[DIM_1]] : index to i64 | ||
// CHECK: %[[T6:.*]] = tensor.from_elements %[[CST_I64_0]], %[[CST_I64_1]] : tensor<2xi64> | ||
// CHECK: %[[T7:.*]] = "mhlo.rng"(%[[T2]], %[[T1]], %[[T6]]) {rng_distribution = #mhlo.rng_distribution<UNIFORM>} : (tensor<f64>, tensor<f64>, tensor<2xi64>) -> tensor<?x?xf64> | ||
// CHECK: %[[T8:.*]] = shape.shape_of %[[T7]] : tensor<?x?xf64> -> tensor<2xindex> | ||
// CHECK: %[[T9:.*]] = "mhlo.dynamic_broadcast_in_dim"(%[[T4]], %[[T8]]) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f64>, tensor<2xindex>) -> tensor<?x?xf64> | ||
// CHECK: %[[T10:.*]] = mhlo.compare LT, %[[T7]], %[[T9]], FLOAT : (tensor<?x?xf64>, tensor<?x?xf64>) -> tensor<?x?xi1> | ||
// CHECK: %[[T11:.*]] = mhlo.convert(%[[T10]]) : (tensor<?x?xi1>) -> tensor<?x?xf32> | ||
// CHECK: %[[T12:.*]] = shape.shape_of %[[T11]] : tensor<?x?xf32> -> tensor<2xindex> | ||
// CHECK: %[[T13:.*]] = shape.shape_of %[[ARG0]] : tensor<?x?xf32> -> tensor<2xindex> | ||
// CHECK: %[[T14:.*]] = shape.cstr_broadcastable %[[T12]], %[[T13]] : tensor<2xindex>, tensor<2xindex> | ||
// CHECK: %[[T15:.*]] = shape.assuming %[[T14]] -> (tensor<?x?xf32>) { | ||
// CHECK: %[[T16:.*]] = shape.broadcast %[[T12]], %[[T13]] : tensor<2xindex>, tensor<2xindex> -> tensor<2xindex> | ||
// CHECK: %[[T17:.*]] = "mhlo.dynamic_broadcast_in_dim"(%[[T11]], %[[T16]]) {broadcast_dimensions = dense<[0, 1]> : tensor<2xi64>} : (tensor<?x?xf32>, tensor<2xindex>) -> tensor<?x?xf32> | ||
// CHECK: %[[T18:.*]] = "mhlo.dynamic_broadcast_in_dim"(%[[ARG0]], %[[T16]]) {broadcast_dimensions = dense<[0, 1]> : tensor<2xi64>} : (tensor<?x?xf32>, tensor<2xindex>) -> tensor<?x?xf32> | ||
// CHECK: %[[T19:.*]] = mhlo.multiply %[[T17]], %[[T18]] : tensor<?x?xf32> | ||
// CHECK: shape.assuming_yield %[[T19]] : tensor<?x?xf32> | ||
// CHECK: } | ||
// CHECK: %[[T20:.*]] = mhlo.convert(%[[T3]]) : (tensor<1xf64>) -> tensor<1xf32> | ||
// CHECK: %[[T21:.*]] = "mhlo.reshape"(%[[T20]]) : (tensor<1xf32>) -> tensor<f32> | ||
// CHECK: %[[T22:.*]] = shape.shape_of %[[T15]] : tensor<?x?xf32> -> tensor<2xindex> | ||
// CHECK: %[[T23:.*]] = "mhlo.dynamic_broadcast_in_dim"(%[[T21]], %[[T22]]) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>, tensor<2xindex>) -> tensor<?x?xf32> | ||
// CHECK: %[[T24:.*]] = mhlo.multiply %[[T15]], %[[T23]] : tensor<?x?xf32> | ||
// CHECK: %[[T25:.*]] = "mhlo.dynamic_broadcast_in_dim"(%[[T0]], %[[T12]]) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>, tensor<2xindex>) -> tensor<?x?xf32> | ||
// CHECK: %[[T26:.*]] = mhlo.compare GE, %[[T11]], %[[T25]], FLOAT : (tensor<?x?xf32>, tensor<?x?xf32>) -> tensor<?x?xi1> | ||
// CHECK: return %[[T24]], %[[T26]] : tensor<?x?xf32>, tensor<?x?xi1> | ||
func.func @torch.aten.native_dropout.train(%arg0: !torch.vtensor<[?,?],f32>, %arg1: !torch.float) -> (!torch.vtensor<[?,?],f32>, !torch.vtensor<[?,?],i1>) { | ||
%bool_true = torch.constant.bool true | ||
%result0, %result1 = torch.aten.native_dropout %arg0, %arg1, %bool_true: !torch.vtensor<[?,?],f32>, !torch.float, !torch.bool -> !torch.vtensor<[?,?],f32>, !torch.vtensor<[?,?],i1> | ||
return %result0, %result1 : !torch.vtensor<[?,?],f32>, !torch.vtensor<[?,?],i1> | ||
} |