Skip to content

Commit

Permalink
[Feature] Add starcoder example (InternLM#83)
Browse files Browse the repository at this point in the history
* add starcoder example

* fix config

* fix config

* fix comments

* fix config
  • Loading branch information
HIT-cwh authored Aug 31, 2023
1 parent d4b02c3 commit b18d906
Show file tree
Hide file tree
Showing 4 changed files with 202 additions and 1 deletion.
189 changes: 189 additions & 0 deletions xtuner/configs/starcoder/starcoder_qlora_stack_exchange_example.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,189 @@
# Copyright (c) OpenMMLab. All rights reserved.
import torch
from bitsandbytes.optim import PagedAdamW32bit
from datasets import load_dataset
from mmengine.dataset import DefaultSampler
from mmengine.hooks import (CheckpointHook, DistSamplerSeedHook, IterTimerHook,
LoggerHook, ParamSchedulerHook)
from mmengine.optim import AmpOptimWrapper, CosineAnnealingLR
from peft import LoraConfig
from transformers import (AutoModelForCausalLM, AutoTokenizer,
BitsAndBytesConfig)

from xtuner.dataset import process_hf_dataset
from xtuner.dataset.collate_fns import default_collate_fn
from xtuner.dataset.map_fns import (stack_exchange_map_fn,
template_map_fn_factory)
from xtuner.engine import DatasetInfoHook, EvaluateChatHook
from xtuner.model import SupervisedFinetune
from xtuner.utils import PROMPT_TEMPLATE

#######################################################################
# PART 1 Settings #
#######################################################################
# Model
pretrained_model_name_or_path = 'bigcode/starcoder'

# Data
data_path = 'ArmelR/stack-exchange-instruction'
prompt_template = PROMPT_TEMPLATE.stack_exchange
max_length = 2048
# randomly select 20000 samples from the original dataset
max_dataset_length = 20000
pack_to_max_length = True

# Scheduler & Optimizer
batch_size = 1 # per_device
accumulative_counts = 16 # 1bs * 16acc * 1gpu = 16 batchsize
dataloader_num_workers = 0
max_epochs = 1
optim_type = PagedAdamW32bit
lr = 1e-4
betas = (0.9, 0.999)
weight_decay = 0.05
max_norm = 1 # grad clip

# Evaluate the generation performance during the training
evaluation_freq = 200
evaluation_inputs = [
'from typing import List def has_close_elements(numbers: List[float], threshold: float) -> bool: """ Check if in given list of numbers, are any two numbers closer to each other than given threshold. >>> has_close_elements([1.0, 2.0, 3.0], 0.5) False >>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3) True """' # noqa: E501
]

#######################################################################
# PART 2 Model & Tokenizer #
#######################################################################
tokenizer = dict(
type=AutoTokenizer.from_pretrained,
pretrained_model_name_or_path=pretrained_model_name_or_path,
trust_remote_code=True,
padding_side='right')

model = dict(
type=SupervisedFinetune,
llm=dict(
type=AutoModelForCausalLM.from_pretrained,
pretrained_model_name_or_path=pretrained_model_name_or_path,
trust_remote_code=True,
torch_dtype=torch.float16,
quantization_config=dict(
type=BitsAndBytesConfig,
load_in_4bit=True,
load_in_8bit=False,
llm_int8_threshold=6.0,
llm_int8_has_fp16_weight=False,
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type='nf4')),
lora=dict(
type=LoraConfig,
r=16,
lora_alpha=32,
lora_dropout=0.05,
bias='none',
target_modules=['c_proj', 'c_attn', 'q_attn'],
task_type='CAUSAL_LM'))

#######################################################################
# PART 3 Dataset & Dataloader #
#######################################################################
train_dataset = dict(
type=process_hf_dataset,
dataset=dict(
type=load_dataset,
path=data_path,
data_dir='data/finetune',
split='train'),
tokenizer=tokenizer,
max_length=max_length,
dataset_map_fn=stack_exchange_map_fn,
template_map_fn=dict(
type=template_map_fn_factory, template=prompt_template),
max_dataset_length=max_dataset_length,
remove_unused_columns=True,
shuffle_before_pack=True,
pack_to_max_length=pack_to_max_length)

train_dataloader = dict(
batch_size=batch_size,
num_workers=dataloader_num_workers,
dataset=train_dataset,
sampler=dict(type=DefaultSampler, shuffle=True),
collate_fn=dict(type=default_collate_fn))

#######################################################################
# PART 4 Scheduler & Optimizer #
#######################################################################
# optimizer
optim_wrapper = dict(
type=AmpOptimWrapper,
optimizer=dict(
type=optim_type, lr=lr, betas=betas, weight_decay=weight_decay),
clip_grad=dict(max_norm=max_norm, error_if_nonfinite=False),
accumulative_counts=accumulative_counts,
loss_scale='dynamic',
dtype='float16')

# learning policy
# More information: https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/param_scheduler.md # noqa: E501
param_scheduler = dict(
type=CosineAnnealingLR,
eta_min=lr * 0.1,
by_epoch=True,
T_max=max_epochs,
convert_to_iter_based=True)

# train, val, test setting
train_cfg = dict(by_epoch=True, max_epochs=max_epochs, val_interval=1)

#######################################################################
# PART 5 Runtime #
#######################################################################
# Log the dialogue periodically during the training process, optional
custom_hooks = [
dict(type=DatasetInfoHook, tokenizer=tokenizer),
dict(
type=EvaluateChatHook,
tokenizer=tokenizer,
every_n_iters=evaluation_freq,
evaluation_inputs=evaluation_inputs,
instruction=prompt_template.INSTRUCTION_START)
]

# configure default hooks
default_hooks = dict(
# record the time of every iteration.
timer=dict(type=IterTimerHook),
# print log every 100 iterations.
logger=dict(type=LoggerHook, interval=10),
# enable the parameter scheduler.
param_scheduler=dict(type=ParamSchedulerHook),
# save checkpoint per epoch.
checkpoint=dict(type=CheckpointHook, interval=1),
# set sampler seed in distributed evrionment.
sampler_seed=dict(type=DistSamplerSeedHook),
)

# configure environment
env_cfg = dict(
# whether to enable cudnn benchmark
cudnn_benchmark=False,
# set multi process parameters
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
# set distributed parameters
dist_cfg=dict(backend='nccl'),
)

# set visualizer
visualizer = None

# set log level
log_level = 'INFO'

# load from which checkpoint
load_from = None

# whether to resume training from the loaded checkpoint
resume = False

# Defaults to use random seed and disable `deterministic`
randomness = dict(seed=None, deterministic=False)
3 changes: 2 additions & 1 deletion xtuner/dataset/map_fns/dataset_map_fns/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,6 +11,7 @@
from .openai_map_fn import openai_map_fn
from .openorca_map_fn import openorca_map_fn
from .sql_map_fn import sql_map_fn
from .stack_exchange_map_fn import stack_exchange_map_fn
from .tiny_codes_map_fn import tiny_codes_map_fn
from .wizardlm_map_fn import wizardlm_map_fn

Expand All @@ -19,5 +20,5 @@
'medical_map_fn', 'openorca_map_fn', 'code_alpaca_map_fn',
'tiny_codes_map_fn', 'colors_map_fn', 'law_reference_map_fn',
'crime_kg_assitant_map_fn', 'sql_map_fn', 'openai_map_fn',
'wizardlm_map_fn'
'wizardlm_map_fn', 'stack_exchange_map_fn'
]
Original file line number Diff line number Diff line change
@@ -0,0 +1,8 @@
# Copyright (c) OpenMMLab. All rights reserved.
def stack_exchange_map_fn(example):
return {
'conversation': [{
'input': example['question'],
'output': example['response']
}]
}
3 changes: 3 additions & 0 deletions xtuner/utils/templates.py
Original file line number Diff line number Diff line change
Expand Up @@ -84,4 +84,7 @@
'helpful, detailed, and polite answers to the '
'user\'s questions. USER: {input} ASSISTANT: '),
INSTRUCTION=('USER: {input} ASSISTANT: ')),
stack_exchange=dict(
INSTRUCTION_START='Question: {input}\n\nAnswer: ',
INSTRUCTION='Question: {input}\n\nAnswer: '),
)

0 comments on commit b18d906

Please sign in to comment.