Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Id and null space #99

Open
wants to merge 5 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
85 changes: 85 additions & 0 deletions examples/rlst_interpolative_decomposition.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,85 @@
//! Demo the inverse of a matrix

pub use rlst::prelude::*;
use rlst::dense::linalg::interpolative_decomposition::{MatrixIdDecomposition, Accuracy};

//Function that creates a low rank matrix by calculating a kernel given a random point distribution on an unit sphere.
fn low_rank_matrix(n: usize, arr: &mut Array<f64, BaseArray<f64, VectorContainer<f64>, 2>, 2>){
//Obtain n equally distributed angles 0<phi<pi and n equally distributed angles 0<theta<2pi
let pi: f64 = std::f64::consts::PI;

let mut angles1 = rlst_dynamic_array2!(f64, [n, 1]);
angles1.fill_from_seed_equally_distributed(0);
angles1.scale_inplace(pi);

let mut angles2 = rlst_dynamic_array2!(f64, [n, 1]);
angles2.fill_from_seed_equally_distributed(1);
angles2.scale_inplace(2.0*pi);


//Calculate n points on a sphere given phi and theta
let mut points = rlst_dynamic_array2!(f64, [n, 3]);

for i in 0..n{
let phi: f64 = angles1.get_value([i, 0]).unwrap();
let theta: f64 = angles2.get_value([i, 0]).unwrap();
*points.get_mut([i, 0]).unwrap() = phi.sin()*theta.cos();
*points.get_mut([i, 1]).unwrap() = phi.sin()*theta.sin();
*points.get_mut([i, 2]).unwrap() = phi.cos();

}

for i in 0..arr.shape()[0]{
let point1 = points.view().into_subview([i, 0], [1, 3]);
for j in 0..n{
if i!=j{
let point2 = points.view().into_subview([j, 0], [1, 3]);
//Calculate distance between all combinations of different points.
let res = point1.view().sub(point2.view());
//Calculate kernel e^{-|points1-points2|^2}
*arr.get_mut([i, j]).unwrap() = 1.0/((res.view_flat().norm_2().pow(2.0)).exp());
}
else{
//If points are equal, set the value to 1
*arr.get_mut([i, j]).unwrap() = 1.0;
}
}
}

}

pub fn main() {
let n:usize = 100;
let slice: usize = 50;
//Tolerance given for the
let tol: f64 = 1e-5;

//Create a low rank matrix
let mut arr: DynamicArray<f64, 2> = rlst_dynamic_array2!(f64, [slice, n]);
low_rank_matrix(n, &mut arr);

let res: IdDecomposition<f64> = arr.view_mut().into_id_alloc(Accuracy::Tol(tol)).unwrap();

println!("The skeleton of the matrix is given by");
res.skel.pretty_print();

println!("The interpolative decomposition matrix is:");
res.id_mat.pretty_print();

println!("The rank of this matrix is {}\n", res.rank);

//We extract the residuals of the matrix
let mut perm_mat: DynamicArray<f64, 2> = rlst_dynamic_array2!(f64, [slice, slice]);
res.get_p(perm_mat.view_mut());
let perm_arr: DynamicArray<f64, 2> = empty_array::<f64, 2>()
.simple_mult_into_resize(perm_mat.view_mut(), arr.view());

let mut a_rs: DynamicArray<f64, 2> = rlst_dynamic_array2!(f64, [slice-res.rank, n]);
a_rs.fill_from(perm_arr.into_subview([res.rank, 0], [slice-res.rank, n]));

//We compute an approximation of the residual columns of the matrix
let a_rs_app: DynamicArray<f64, 2> = empty_array().simple_mult_into_resize(res.id_mat.view(), res.skel);

let error: f64 = a_rs.view().sub(a_rs_app.view()).view_flat().norm_2();
println!("Interpolative Decomposition L2 absolute error: {}", error);
}
14 changes: 14 additions & 0 deletions examples/rlst_null_space.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,14 @@
//! Demo the inverse of a matrix
pub use rlst::prelude::*;

//Here we compute the null space (B) of the rowspace of a short matrix (A).
pub fn main() {
let mut arr = rlst_dynamic_array2!(f64, [3, 4]);
arr.fill_from_seed_equally_distributed(0);
let tol = 1e-15;
let null_res = arr.view_mut().into_null_alloc(tol).unwrap();
let res: Array<f64, BaseArray<f64, VectorContainer<f64>, 2>, 2> = empty_array().simple_mult_into_resize(arr.view_mut(), null_res.null_space_arr.view());

println!("Value of |A*B|_2, where B=null(A): {}", res.view_flat().norm_2());

}
9 changes: 6 additions & 3 deletions src/dense/linalg.rs
Original file line number Diff line number Diff line change
@@ -1,6 +1,7 @@
//! Linear algebra routines

use crate::{MatrixInverse, MatrixPseudoInverse, MatrixQr, MatrixSvd, RlstScalar};

use crate::{MatrixInverse, MatrixPseudoInverse, MatrixQr, MatrixId, MatrixSvd, MatrixNull, RlstScalar};

use self::lu::MatrixLu;

Expand All @@ -9,6 +10,8 @@
pub mod pseudo_inverse;
pub mod qr;
pub mod svd;
pub mod interpolative_decomposition;

Check failure on line 13 in src/dense/linalg.rs

View workflow job for this annotation

GitHub Actions / Build docs

missing documentation for a module
pub mod null_space;

Check failure on line 14 in src/dense/linalg.rs

View workflow job for this annotation

GitHub Actions / Build docs

missing documentation for a module

/// Return true if stride is column major as required by Lapack.
pub fn assert_lapack_stride(stride: [usize; 2]) {
Expand All @@ -20,9 +23,9 @@
}

/// Marker trait for objects that support Matrix decompositions.
pub trait LinAlg: MatrixInverse + MatrixQr + MatrixSvd + MatrixLu + MatrixPseudoInverse {}
pub trait LinAlg: MatrixInverse + MatrixQr + MatrixSvd + MatrixLu + MatrixPseudoInverse + MatrixId + MatrixNull{}

impl<T: RlstScalar + MatrixInverse + MatrixQr + MatrixSvd + MatrixLu + MatrixPseudoInverse> LinAlg
impl<T: RlstScalar + MatrixInverse + MatrixQr + MatrixSvd + MatrixLu + MatrixPseudoInverse + MatrixId + MatrixNull> LinAlg
for T
{
}
Expand Down
252 changes: 252 additions & 0 deletions src/dense/linalg/interpolative_decomposition.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,252 @@
use crate::dense::array::Array;
use crate::dense::traits::{RandomAccessMut, RawAccessMut, Shape, Stride, UnsafeRandomAccessByValue, UnsafeRandomAccessMut, UnsafeRandomAccessByRef, MultIntoResize, DefaultIterator};
use crate::dense::types::{c32, c64, RlstResult, RlstScalar};
use crate::{BaseArray, VectorContainer, rlst_dynamic_array1, empty_array, rlst_dynamic_array2};
use crate::DynamicArray;


/// Compute the matrix interpolative decomposition, by providing a rank and an interpolation matrix.
///
/// The matrix interpolative decomposition is defined for a two dimensional 'long' array `arr` of
/// shape `[m, n]`, where `n>m`.
///
/// # Example
///
/// The following command computes the interpolative decomposition of an array `a` for a given tolerance, tol.
/// ```
/// # use rlst::rlst_dynamic_array2;
/// # let tol: f64 = 1e-5;
/// # let mut a = rlst_dynamic_array2!(f64, [50, 100]);
/// # a.fill_from_seed_equally_distributed(0);
/// # let res = a.view_mut().into_id_alloc(tol, None).unwrap();
/// ```

/// This method allocates memory for the interpolative decomposition.
pub trait MatrixId: RlstScalar {
///This method allocates space for ID
fn into_id_alloc<
ArrayImpl: UnsafeRandomAccessByValue<2, Item = Self>
+ Stride<2>
+ Shape<2>
+ RawAccessMut<Item = Self>
>(
arr: Array<Self, ArrayImpl, 2>, rank_param: Accuracy<<Self as RlstScalar>::Real>
) -> RlstResult<IdDecomposition<Self>>;
}

macro_rules! implement_into_id {
($scalar:ty) => {
impl MatrixId for $scalar {
fn into_id_alloc<
ArrayImpl: UnsafeRandomAccessByValue<2, Item = Self>
+ Stride<2>
+ Shape<2>
+ RawAccessMut<Item = Self>
>(
arr: Array<Self, ArrayImpl, 2>, rank_param: Accuracy<<Self as RlstScalar>::Real>
) -> RlstResult<IdDecomposition<Self>> {
IdDecomposition::<$scalar>::new(arr, rank_param)
}
}
};
}

implement_into_id!(f32);
implement_into_id!(f64);
implement_into_id!(c32);
implement_into_id!(c64);

impl<
Item: RlstScalar + MatrixId,
ArrayImplId: UnsafeRandomAccessByValue<2, Item = Item>
+ Stride<2>
+ RawAccessMut<Item = Item>
+ Shape<2>,
> Array<Item, ArrayImplId, 2>
{
/// Compute the interpolative decomposition of a given 2-dimensional array.
pub fn into_id_alloc(self, rank_param: Accuracy<<Item as RlstScalar>::Real>) -> RlstResult<IdDecomposition<Item>> {
<Item as MatrixId>::into_id_alloc(self, rank_param)
}
}

/// Compute the matrix interpolative decomposition
pub trait MatrixIdDecomposition: Sized {
/// Item type
type Item: RlstScalar;
/// Create a new Interpolative Decomposition from a given array.
fn new<
ArrayImpl: UnsafeRandomAccessByValue<2, Item=Self::Item>
+ Stride<2>
+ Shape<2>
+ RawAccessMut<Item =Self::Item>>(arr: Array<Self::Item, ArrayImpl, 2>, rank_param: Accuracy<<Self::Item as RlstScalar>::Real>) -> RlstResult<Self>;

/// Compute the rank of the decomposition from a given tolerance
fn rank_from_tolerance<
ArrayImplMut: UnsafeRandomAccessByValue<2, Item = Self::Item>
+ Shape<2>
+ UnsafeRandomAccessMut<2, Item = Self::Item>
+ UnsafeRandomAccessByRef<2, Item = Self::Item>,
>(r_diag: Array<Self::Item, ArrayImplMut, 2>, tol: <Self::Item as RlstScalar>::Real)->usize;

///Compute the permutation matrix associated to the Interpolative Decomposition
fn get_p<
ArrayImplMut: UnsafeRandomAccessByValue<2, Item = Self::Item>
+ Shape<2>
+ UnsafeRandomAccessMut<2, Item = Self::Item>
+ UnsafeRandomAccessByRef<2, Item = Self::Item>,
>(
&self, arr: Array<Self::Item, ArrayImplMut, 2>
);



}

///Stores the relevant features regarding interpolative decomposition.
pub struct IdDecomposition<
Item: RlstScalar
> {
/// skel: skeleton of the interpolative decomposition
pub skel: DynamicArray<Item, 2>,
/// perm: permutation associated to the pivoting indiced interpolative decomposition
pub perm: Vec<usize>,
/// rank: rank of the matrix associated to the interpolative decomposition for a given tolerance
pub rank: usize,
///id_mat: interpolative matrix calculated for a given tolerance
pub id_mat: Array<Item, BaseArray<Item, VectorContainer<Item>, 2>, 2>,
}

///Options to decide the matrix rank
pub enum Accuracy<T>{
/// Indicates that the rank of the decomposition will be computed from a given tolerance
Tol(T),
/// Indicates that the rank of the decomposition is given beforehand by the user
FixedRank(usize),
/// Computes the rank from the tolerance, and if this one is smaller than a user set range, then we stick to the user set range
MaxRank(T, usize)
}


macro_rules! impl_id {
($scalar:ty) => {
impl MatrixIdDecomposition for IdDecomposition<$scalar>
{
type Item = $scalar;

fn new<
ArrayImpl: UnsafeRandomAccessByValue<2, Item = $scalar>
+ Stride<2>
+ Shape<2>
+ RawAccessMut<Item = $scalar>,
>(arr: Array<$scalar, ArrayImpl, 2>, rank_param: Accuracy<<$scalar as RlstScalar>::Real>) -> RlstResult<Self>{

//We compute the QR decomposition using rlst QR decomposition
let mut arr_qr: DynamicArray<$scalar, 2> = rlst_dynamic_array2!($scalar, [arr.shape()[1], arr.shape()[0]]);
arr_qr.fill_from(arr.view().conj().transpose());
let arr_qr_shape = arr_qr.shape();
let qr = arr_qr.view_mut().into_qr_alloc().unwrap();

//We obtain relevant parameters of the decomposition: the permutation induced by the pivoting and the R matrix
let perm = qr.get_perm();
let mut r_mat = rlst_dynamic_array2!($scalar, [arr_qr_shape[1], arr_qr_shape[1]]);
qr.get_r(r_mat.view_mut());

//The maximum rank is given by the number of columns of the transposed matrix
let dim: usize = arr_qr_shape[1];
let rank: usize;

//The rank can be given a priori, in which case, we do not need to compute the rank using the tolerance parameter.

match rank_param{
Accuracy::Tol(tol) =>{
rank = Self::rank_from_tolerance(r_mat.view_mut(), tol);
},
Accuracy::FixedRank(k) => rank = k,
Accuracy::MaxRank(tol, k) =>{
rank = std::cmp::max(k, Self::rank_from_tolerance(r_mat.view_mut(), tol));
},
}

//We permute arr to extract the columns belonging to the skeleton
let mut permutation = rlst_dynamic_array2!($scalar, [arr_qr_shape[1], arr_qr_shape[1]]);
permutation.set_zero();

for (index, &elem) in perm.iter().enumerate() {
*permutation.get_mut([index, elem]).unwrap() = <$scalar as num::One>::one();
}

let perm_arr = empty_array::<$scalar, 2>()
.simple_mult_into_resize(permutation.view_mut(), arr.view());

let mut skel = empty_array();
skel.fill_from_resize(perm_arr.into_subview([0,0],[rank, arr_qr_shape[0]]));

//In the case the matrix is full rank or we get a matrix of rank 0, then return the identity matrix.
//If not, compute the Interpolative Decomposition matrix.
if rank == 0 || rank >= dim{
let mut id_mat = rlst_dynamic_array2!($scalar, [dim, dim]);
id_mat.set_identity();
Ok(Self{skel, perm, rank, id_mat})
}
else{

let shape: [usize; 2] = [arr_qr_shape[1], arr_qr_shape[1]];
let mut id_mat: DynamicArray<$scalar, 2> = rlst_dynamic_array2!($scalar, [dim-rank, rank]);

let mut k11: DynamicArray<$scalar, 2> = rlst_dynamic_array2!($scalar, [rank, rank]);
k11.fill_from(r_mat.view_mut().into_subview([0, 0], [rank, rank]));
k11.view_mut().into_inverse_alloc().unwrap();
let mut k12: DynamicArray<$scalar, 2> = rlst_dynamic_array2!($scalar, [rank, dim-rank]);
k12.fill_from(r_mat.view_mut().into_subview([0, rank], [rank, shape[1]-rank]));

let res = empty_array().simple_mult_into_resize(k11.view(), k12.view());
id_mat.fill_from(res.view().conj().transpose().view());
Ok(Self{skel, perm, rank, id_mat})
}
}

fn rank_from_tolerance<
ArrayImplMut: UnsafeRandomAccessByValue<2, Item = $scalar>
+ Shape<2>
+ UnsafeRandomAccessMut<2, Item = $scalar>
+ UnsafeRandomAccessByRef<2, Item = $scalar>,
>(r_mat: Array<$scalar, ArrayImplMut, 2>, tol: <$scalar as RlstScalar>::Real)->usize{
let dim = r_mat.shape()[0];
let mut r_diag:Array<$scalar, BaseArray<$scalar, VectorContainer<$scalar>, 1>, 1> = rlst_dynamic_array1!($scalar, [dim]);
r_mat.get_diag(r_diag.view_mut());
let max: $scalar = r_diag.iter().max_by(|a, b| a.abs().total_cmp(&b.abs())).unwrap().abs().into();

//We compute the rank of the matrix
if max.re() > 0.0{
let alpha: $scalar = (1.0/max) as $scalar;
r_diag.scale_inplace(alpha);
let aux_vec = r_diag.iter().filter(|el| el.abs() > tol.into() ).collect::<Vec<_>>();
aux_vec.len()
}
else{
dim
}
}

fn get_p<
ArrayImplMut: UnsafeRandomAccessByValue<2, Item = $scalar>
+ Shape<2>
+ UnsafeRandomAccessMut<2, Item = $scalar>
+ UnsafeRandomAccessByRef<2, Item = $scalar>,
>(
&self, mut arr: Array<$scalar, ArrayImplMut, 2>
) {
arr.set_zero();
for (index, &elem) in self.perm.iter().enumerate() {
*arr.get_mut([index, elem]).unwrap() = <$scalar as num::One>::one();
}
}
}
};
}

impl_id!(f64);
impl_id!(f32);
impl_id!(c32);
impl_id!(c64);
Loading
Loading