Youtube or directly click the image.
Youtube or directly click the image.
This is a repo using SmoothNet as a HRNet Plugin to generate smooth pose trajectory from a single person motion video.
The code is developed using python 3.9 on Ubuntu 18.04 and using an NVIDIA GeForce 3060 GPU.
-
Create conda env
conda create -n you-env-name python=3.9
-
Install Pytorch:
pip install torch==1.11.0+cu113 torchvision==0.12.0+cu113 torchaudio==0.11.0 --extra-index-url https://download.pytorch.org/whl/cu113
-
Clone this repo, and we call the root directory as ${ROOT}.
-
Install dependencies:
pip install -r requirements.txt
-
Install COCOAPI:
pip install pycocotools
-
Init video output dir:
mkdir output cd output mkdir HRNet mkdir SmoothNet
Your dir tree should look like this:
${ROOT} |-- data |-- experiments |-- lib |-- models |-- output | |-- HRNet | `-- SmoothNet |-- smoothnet | |-- configs | |-- data | `-- lib |-- tools |-- video |-- README.md |-- requirements.txt
-
Download HRNet pretrained models from model zoo(GoogleDrive or OneDrive)
${ROOT} `-- models `-- pytorch |-- pose_coco | |-- pose_hrnet_w32_384x288.pth | `--pose_hrnet_w48_384x288.pth
-
Download SmoothNet pretrained models from model zoo(Google Drive or Baidu Netdisk)
${ROOT} `-- smoothnet `-- data `-- checkpoints `-- h36m_fcn_3D `--checkpoint_32.pth.tar
- Configure the python run script and the runtime parameters in Pycharm
- Get the result
${ROOT}/output/HRNet/*.mp4 contains the result of HRNet
${ROOT}/output/SmoothNet/*.mp4 contains the result of SmoothNet
@inproceedings{sun2019deep,
title={Deep High-Resolution Representation Learning for Human Pose Estimation},
author={Sun, Ke and Xiao, Bin and Liu, Dong and Wang, Jingdong},
booktitle={CVPR},
year={2019}
}
@inproceedings{xiao2018simple,
author={Xiao, Bin and Wu, Haiping and Wei, Yichen},
title={Simple Baselines for Human Pose Estimation and Tracking},
booktitle = {European Conference on Computer Vision (ECCV)},
year = {2018}
}
@article{WangSCJDZLMTWLX19,
title={Deep High-Resolution Representation Learning for Visual Recognition},
author={Jingdong Wang and Ke Sun and Tianheng Cheng and
Borui Jiang and Chaorui Deng and Yang Zhao and Dong Liu and Yadong Mu and
Mingkui Tan and Xinggang Wang and Wenyu Liu and Bin Xiao},
journal = {TPAMI}
year={2019}
}
@inproceedings{zeng2022smoothnet,
title={SmoothNet: A Plug-and-Play Network for Refining Human Poses in Videos},
author={Zeng, Ailing and Yang, Lei and Ju, Xuan and Li, Jiefeng and Wang, Jianyi and Xu, Qiang},
booktitle={European Conference on Computer Vision},
year={2022},
organization={Springer}
}
@article{liu2020a,
title={A Graph Attention Spatio-temporal Convolutional Networks for 3D Human Pose Estimation in Video},
author={Liu, Junfa and Rojas, Juan and Liang, Zhijun and Li, Yihui and Guan, Yisheng},
journal={arXiv preprint arXiv:2003.14179},
year={2020}
}