Skip to content

Using SmoothNet As a HRNet Plugin (Including the Demo generating the Smooth pose trajectory)(SmoothNet作为插件来使用HRNet,包含生成平滑轨迹的Demo)

Notifications You must be signed in to change notification settings

ligaoqi2/Using-SmoothNet-As-a-HRNet-Plugin

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Using SmoothNet As a HRNet Plugin

1. SmoothNet Result Example

Youtube or directly click the image.

Watch the video

2. HRNet Result Example

Youtube or directly click the image.

Watch the video

Introduction

This is a repo using SmoothNet as a HRNet Plugin to generate smooth pose trajectory from a single person motion video.

Environment

The code is developed using python 3.9 on Ubuntu 18.04 and using an NVIDIA GeForce 3060 GPU.

Quick start

Installation

  1. Create conda env

    conda create -n you-env-name python=3.9
    
  2. Install Pytorch:

    pip install torch==1.11.0+cu113 torchvision==0.12.0+cu113 torchaudio==0.11.0 --extra-index-url https://download.pytorch.org/whl/cu113
    
  3. Clone this repo, and we call the root directory as ${ROOT}.

  4. Install dependencies:

    pip install -r requirements.txt
    
  5. Install COCOAPI:

    pip install pycocotools
    
  6. Init video output dir:

    mkdir output
    cd output
    mkdir HRNet
    mkdir SmoothNet
    

    Your dir tree should look like this:

    ${ROOT}
    |-- data
    |-- experiments
    |-- lib
    |-- models
    |-- output
    |         |-- HRNet
    |         `-- SmoothNet
    |-- smoothnet
    |         |-- configs
    |         |-- data
    |         `-- lib
    |-- tools
    |-- video
    |-- README.md
    |-- requirements.txt
    
  7. Download HRNet pretrained models from model zoo(GoogleDrive or OneDrive)

    ${ROOT}
     `-- models
         `-- pytorch
             |-- pose_coco
             |   |-- pose_hrnet_w32_384x288.pth
             |   `--pose_hrnet_w48_384x288.pth
    
  8. Download SmoothNet pretrained models from model zoo(Google Drive or Baidu Netdisk)

    ${ROOT}
     `-- smoothnet
         `-- data
             `-- checkpoints
                 `-- h36m_fcn_3D
                      `--checkpoint_32.pth.tar
    

Run the Demo

  1. Configure the python run script and the runtime parameters in Pycharm

  1. Get the result
${ROOT}/output/HRNet/*.mp4                  contains the result of HRNet
${ROOT}/output/SmoothNet/*.mp4        contains the result of SmoothNet

Acknowledgments

@inproceedings{sun2019deep,
  title={Deep High-Resolution Representation Learning for Human Pose Estimation},
  author={Sun, Ke and Xiao, Bin and Liu, Dong and Wang, Jingdong},
  booktitle={CVPR},
  year={2019}
}

@inproceedings{xiao2018simple,
    author={Xiao, Bin and Wu, Haiping and Wei, Yichen},
    title={Simple Baselines for Human Pose Estimation and Tracking},
    booktitle = {European Conference on Computer Vision (ECCV)},
    year = {2018}
}

@article{WangSCJDZLMTWLX19,
  title={Deep High-Resolution Representation Learning for Visual Recognition},
  author={Jingdong Wang and Ke Sun and Tianheng Cheng and 
          Borui Jiang and Chaorui Deng and Yang Zhao and Dong Liu and Yadong Mu and 
          Mingkui Tan and Xinggang Wang and Wenyu Liu and Bin Xiao},
  journal   = {TPAMI}
  year={2019}
}

@inproceedings{zeng2022smoothnet,
      title={SmoothNet: A Plug-and-Play Network for Refining Human Poses in Videos},
      author={Zeng, Ailing and Yang, Lei and Ju, Xuan and Li, Jiefeng and Wang, Jianyi and Xu, Qiang},
      booktitle={European Conference on Computer Vision},
      year={2022},
      organization={Springer}
}

@article{liu2020a,
  title={A Graph Attention Spatio-temporal Convolutional Networks for 3D Human Pose Estimation in Video},
  author={Liu, Junfa and Rojas, Juan and Liang, Zhijun and Li, Yihui and Guan, Yisheng},
  journal={arXiv preprint arXiv:2003.14179},
  year={2020}
}

Contact

About

Using SmoothNet As a HRNet Plugin (Including the Demo generating the Smooth pose trajectory)(SmoothNet作为插件来使用HRNet,包含生成平滑轨迹的Demo)

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages