Skip to content

Commit

Permalink
feat: add example notebooks (#1625)
Browse files Browse the repository at this point in the history
  • Loading branch information
sarahwooders authored Aug 10, 2024
1 parent 605cfe4 commit 3ab4db5
Showing 1 changed file with 275 additions and 0 deletions.
275 changes: 275 additions & 0 deletions examples/notebooks/multi_agent.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,275 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 31,
"id": "78fb59cf-89fd-4b30-8a1c-d1ae4bfd3daf",
"metadata": {},
"outputs": [],
"source": [
"from memgpt import create_client, Admin\n",
"from memgpt.client.client import LocalClient, RESTClient "
]
},
{
"cell_type": "code",
"execution_count": 32,
"id": "9269eda2-3108-4955-86ab-b406d51f562a",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"UUID('00000000-0000-0000-0000-000000000000')"
]
},
"execution_count": 32,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"client = create_client() \n",
"client.user_id"
]
},
{
"cell_type": "code",
"execution_count": 33,
"id": "879710d4-21c7-43ec-8d00-73e618f55693",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"ListModelsResponse(models=[LLMConfigModel(model='gpt-4o-mini', model_endpoint_type='openai', model_endpoint='https://api.openai.com/v1', model_wrapper=None, context_window=8192)])"
]
},
"execution_count": 33,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"client.list_models()"
]
},
{
"cell_type": "markdown",
"id": "af6ea8eb-fc6b-4de5-ae79-c2b684a81f17",
"metadata": {},
"source": [
"## Create a key from the Admin portal \n",
"(This is to allow viewing agents on the dev portal) "
]
},
{
"cell_type": "code",
"execution_count": 35,
"id": "715fa669-3fc6-4579-96a9-c4a730f43e29",
"metadata": {},
"outputs": [],
"source": [
"admin_client = Admin(base_url=\"http://localhost:8283\", token=\"memgptadmin\")"
]
},
{
"cell_type": "code",
"execution_count": 36,
"id": "1782934f-7884-4ee7-ad09-5ae33efa3b2e",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"CreateAPIKeyResponse(api_key='sk-45cc3e1fd35a3fac3a2ad959fc23877a0476181e8b0a5557')"
]
},
"execution_count": 36,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"admin_client.create_key(user_id=client.user_id, key_name=\"key\")"
]
},
{
"cell_type": "code",
"execution_count": 37,
"id": "b29bac8d-2a15-45de-a60d-6d94275443f5",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"MemGPT.memgpt.server.server - INFO - Created new agent from config: <memgpt.agent.Agent object at 0x14e542600>\n"
]
}
],
"source": [
"agent_state = client.create_agent()"
]
},
{
"cell_type": "markdown",
"id": "5fbc43c8-9536-4107-a64d-6e702083242b",
"metadata": {},
"source": [
"## Create an agent "
]
},
{
"cell_type": "code",
"execution_count": 38,
"id": "f0a388b5-2d00-4f3e-8a5b-b768da02ac8e",
"metadata": {},
"outputs": [],
"source": [
"def read_resume(self, name: str): \n",
" \"\"\"\n",
" Read the resume data for a candidate given the name\n",
"\n",
" Args: \n",
" name (str): Candidate name \n",
"\n",
" Returns: \n",
" resume_data (str): Candidate's resume data \n",
" \"\"\"\n",
" import os\n",
" filepath = os.path.join(\"data\", \"resumes\", name.lower().replace(\" \", \"_\") + \".txt\")\n",
" #print(\"read\", filepath)\n",
" return open(filepath).read()\n",
"\n",
"def submit_candidate_for_outreach(self, candidate_name: str, resume: str, justification: str): \n",
" \"\"\"\n",
" Submit a candidate for outreach. \n",
"\n",
" Args: \n",
" candidate_name (str): The name of the candidate\n",
" resume (str): The text representation of the candidate's resume \n",
" justification (str): Summary reason for why the candidate is good and should be reached out to\n",
" \"\"\"\n",
" from memgpt import create_client \n",
" client = create_client()\n",
" message = \"Reach out to the following candidate. \" \\\n",
" + f\"Name: {candidate_name}\\n\" \\\n",
" + f\"Resume Data: {resume}\\n\" \\\n",
" + f\"Justification: {justification}\"\n",
" # NOTE: we will define this agent later \n",
" #print(\"submit for outreach\", message)\n",
" response = client.send_message(agent_name=\"outreach_agent\", role=\"user\", message=message) # TODO: implement this\n",
" #print(respose.messages)\n",
"\n",
"# TODO: add an archival andidate tool (provide justification) \n",
"\n",
"read_resume_tool = client.create_tool(read_resume) \n",
"submit_candidate_tool = client.create_tool(submit_candidate_for_outreach)"
]
},
{
"cell_type": "code",
"execution_count": 39,
"id": "d2b0f66f-6cc3-471f-b2c7-49f51f5bbb7b",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"MemGPT.memgpt.server.server - INFO - Created new agent from config: <memgpt.agent.Agent object at 0x14e542600>\n"
]
}
],
"source": [
"from memgpt.memory import ChatMemory\n",
"\n",
"company_description = \"The company is called AgentOS and is building AI tools to make it easier to create and deploy LLM agents.\"\n",
"skills = \"Front-end (React, Typescript), software engineering (ideally Python), and experience with LLMs.\"\n",
"\n",
"\n",
"leadgen_agent = client.create_agent(\n",
" name=\"leadgen_agent\", \n",
" memory=ChatMemory(\n",
" persona=f\"You are responsible to finding good recruiting candidates, for the company description: {company_description}. \" \\\n",
" + f\"Ideal canddiates have skills: {skills}. \" \\\n",
" + \"Search for candidates by calling the `search_candidates_db` function. \" \\\n",
" + \"When you find a good candidate, submit the candidate for outreach with the `submit_candidate_for_outreach` tool. \" \\\n",
" + \"Continue to search through the database until there are no more entries. \",\n",
" human=\"\",\n",
" ), \n",
" tools=[read_resume_tool.name, submit_candidate_tool.name]\n",
")"
]
},
{
"cell_type": "markdown",
"id": "1f489784-dbc9-4c93-9181-457460b05401",
"metadata": {},
"source": [
"## Cleanup "
]
},
{
"cell_type": "code",
"execution_count": 23,
"id": "f93c330b-909a-4180-bf6b-166b951977a6",
"metadata": {},
"outputs": [],
"source": [
"agents = client.list_agents()"
]
},
{
"cell_type": "code",
"execution_count": 25,
"id": "523a382d-f514-46cb-a902-84ee74706f01",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Deleted FierceNucleus\n",
"Deleted LuxuriousRaccoon\n"
]
}
],
"source": [
"for agent in agents: \n",
" client.delete_agent(agent.id)\n",
" print(\"Deleted\", agent.name)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e7f1a012-0080-4e68-b26f-7d139a37bad0",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "memgpt",
"language": "python",
"name": "memgpt"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.2"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

0 comments on commit 3ab4db5

Please sign in to comment.