Releases: leriomaggio/deep-learning-keras-tensorflow
Keras Tutorial @ Web Valley 2017
Deep Learning with Keras and Tensorflow
Valerio Maggio: PostDoc Data Scientist @ FBK/MPBA
Contacts:
@leriomaggio | [email protected] |
Installed Versions
import keras
print('keras: ', keras.__version__)
# optional
import theano
print('Theano: ', theano.__version__)
import tensorflow as tf
print('Tensorflow: ', tf.__version__)
keras: 2.0.4
Theano: 0.9.0
Tensorflow: 1.2.1
Outline
-
Part I: Introduction
-
Intro to Artificial Neural Networks
- Perceptron and MLP
- naive pure-Python implementation
- fast forward, sgd, backprop
-
Introduction to Deep Learning Frameworks
- Intro to Theano
- Intro to Tensorflow
- Intro to Keras
- Overview and main features
- Overview of the
core
layers - Multi-Layer Perceptron and Fully Connected
- Examples with
keras.models.Sequential
andDense
- Examples with
- Keras Backend
-
-
Part II: Supervised Learning
-
Fully Connected Networks and Embeddings
- Intro to MNIST Dataset
- Hidden Leayer Representation and Embeddings
-
Convolutional Neural Networks
-
meaning of convolutional filters
- examples from ImageNet
-
Visualising ConvNets
-
Advanced CNN
- Dropout
- MaxPooling
- Batch Normalisation
-
HandsOn: MNIST Dataset
- FC and MNIST
- CNN and MNIST
-
Deep Convolutiona Neural Networks with Keras (ref:
keras.applications
)- VGG16
- VGG19
- ResNet50
-
-
Transfer Learning and FineTuning
-
Hyperparameters Optimisation
-
-
Part III: Unsupervised Learning
- AutoEncoders and Embeddings
- AutoEncoders and MNIST
- word2vec and doc2vec (gensim) with
keras.datasets
- word2vec and CNN
- word2vec and doc2vec (gensim) with
-
Part IV: Recurrent Neural Networks
- Recurrent Neural Network in Keras
SimpleRNN
,LSTM
,GRU
- LSTM for Sentence Generation
- Recurrent Neural Network in Keras
-
PartV: Additional Materials:
- Custom Layers in Keras
- Multi modal Network Topologies with Keras
Keras Tutorial @ Python San Sebastian (PySS) 2016
Deep Learning with Keras and Tensorflow
Valerio Maggio: PostDoc Data Scientist @ FBK/MPBA
Contacts:
@leriomaggio | [email protected] |
Goal of this Tutorial
-
Introduce main features of Keras
- Plus some introductory overview of Tensorflow
-
Learn how simple and Pythonic is doing Deep Learning with Keras
-
Understand how easy is to do basic and advanced Deep Learning models in Keras;
- Examples and Hand-on Excerises along the way.
Installed Versions
import keras
print('keras: ', keras.__version__)
# optional
import theano
print('Theano: ', theano.__version__)
import tensorflow as tf
print('Tensorflow: ', tf.__version__)
keras: 1.0.7
Theano: 0.8.2
Tensorflow: 0.10.0
Ten Steps to Keras @ PyData London 2017
Deep Learning with Keras and Tensorflow
Valerio Maggio: PostDoc Data Scientist @ FBK/MPBA
Contacts:
@leriomaggio | [email protected] |
Library Versions
import keras
print('keras: ', keras.__version__)
# optional
import theano
print('Theano: ', theano.__version__)
import tensorflow as tf
print('Tensorflow: ', tf.__version__)
keras: 2.0.2
Theano: 0.9.0
Tensorflow: 1.0.1
Goal
- Introduce main features of Keras APIs to build Neural Networks.
- Learn how to implement simple and complex Deep Neural Networks Architectures using Keras.
- Discover Keras Implementation and Internals.
- Note: examples and hands-on exercises will be provided along the way.
Outline in Ten (~ish) Notebooks
- Multi-layer Fully Connected Networks (and the backends)
- Hidden Layers features and Embeddings
- Convolutional Networks
- Hyperparameter Tuning
- Cutsom Layers
- Deep CNN and Residual Networks
- Transfer Learning and Fine Tuning
- Recursive Neural Networks
- AutoEncoders
- Multi-Modal Networks
Keras Tutorial @ PyData Florence 2017
Deep Learning with Keras and Tensorflow
Valerio Maggio: PostDoc Data Scientist @ FBK/MPBA
Contacts:
@leriomaggio | [email protected] |
Library Versions
import keras
print('keras: ', keras.__version__)
# optional
import theano
print('Theano: ', theano.__version__)
import tensorflow as tf
print('Tensorflow: ', tf.__version__)
keras: 2.0.2
Theano: 0.9.0
Tensorflow: 1.0.1
Outline at a glance
-
Part I: Introduction to ANN using Tensorflow and Keras
- naive pure-Python implementation
- fast forward, sgd, backprop
- Model + SGD using Tensorflow
- Introduction to Keras main features
keras.layers.core.Dense
keras.backend
- Multi-Layer Perceptron and Fully Connected Networks
-
Part II: Supervised Learning and Convolutional Neural Nets
- Intro: Focus on Image Classification
- Intro to ConvNets
- Advanced CNN
- Dropout
- MaxPooling
- Batch Normalisation
- Famous Models in Keras
(ref:keras.applications
) - Transfer Learning
-
Part III: Unsupervised Learning
- AutoEncoders
- word2vec & doc2vec (gensim) &
keras.datasets
Embedding
-
Part IV: Additional Materials
- Recurrent Neural Networks: RNN, LSTM, GRU
- HandsOn: IMDB
- Multi-Input/Multi-Output Network Topologies
Keras Tutorial @ EuroScipy 2016
Deep Learning with Keras
Authors: Yam Peleg, Valerio Maggio
- Introduce main features of Keras
- Learn how simple and Pythonic is doing Deep Learning with Keras
- Understand how easy is to do basic and advanced DL models in Keras;
- Examples and Hand-on Excerises along the way.
Installed Versions
import keras
print('keras: ', keras.__version__)
# optional
import theano
print('Theano: ', theano.__version__)
import tensorflow as tf
print('Tensorflow: ', tf.__version__)
keras: 1.0.7
Theano: 0.8.2
Tensorflow: 0.10.0rc0
Keras Tutorial @ Budapest BI Forum 2016
Deep Learning with Keras and Tensorflow
Valerio Maggio: PostDoc Data Scientist @ FBK/MPBA
Contacts:
@leriomaggio | [email protected] |
Library Versions
import keras
print('keras: ', keras.__version__)
# optional
import theano
print('Theano: ', theano.__version__)
import tensorflow as tf
print('Tensorflow: ', tf.__version__)
keras: 1.0.7
Theano: 0.8.2
Tensorflow: 0.10.0
Goal of this Tutorial
-
Introduce main features of Keras
- Plus some introductory overview of Tensorflow
-
Learn how simple and Pythonic is doing Deep Learning with Keras
-
Understand how easy is to do basic and advanced Deep Learning models in Keras;
- Examples and Hand-on Excerises along the way.