Tukeygrps provides simple wrapper functions for the annotation of (gg)plots according to statistical differences between groups determined by a parametric Tukey-HSD test from {stats} or a non-parametric Kruskal-Wallis test with Dunn’s test for multiple comparisons from {dunn.test}.
You can install tukeygrps from github using remotes:
install.packages("remotes")
library("remotes")
install_github("leonardblaschek/tukeygrps")
Parametric multiple comparisons like the Tukey HSD (honest significant differences) test shown in section 1 are only recommended in cases where the data fulfill all of the following conditions:
- normally distributed
- homoscedastic
- independent within and between groups
- equal in sample size
If you have strong evidence that they do not fulfill these conditions, consider a non-parametric method of comparison, like the Kruskal-Wallis test followed by Dunn’s multiple comparisons shown in section 2.
Here we use letter_groups() with stat_method = “tukey” to add letters to a geom_point plot. Alpha is set to 0.001, the letters are printed at y = 0, and there are no additional grouping variables.
library(tukeygrps)
library(tidyverse)
data(mpg)
head(mpg)
#> # A tibble: 6 x 11
#> manufacturer model displ year cyl trans drv cty hwy fl class
#> <chr> <chr> <dbl> <int> <int> <chr> <chr> <int> <int> <chr> <chr>
#> 1 audi a4 1.8 1999 4 auto(l5) f 18 29 p compa…
#> 2 audi a4 1.8 1999 4 manual(m5) f 21 29 p compa…
#> 3 audi a4 2 2008 4 manual(m6) f 20 31 p compa…
#> 4 audi a4 2 2008 4 auto(av) f 21 30 p compa…
#> 5 audi a4 2.8 1999 6 auto(l5) f 16 26 p compa…
#> 6 audi a4 2.8 1999 6 manual(m5) f 18 26 p compa…
tukey_letters <- letter_groups(mpg, hwy, class, "tukey", print_position = 0, stat_alpha = 0.001)
head(tukey_letters)
#> class Letters hwy
#> 1 compact a 0
#> 2 subcompact a 0
#> 3 midsize a 0
#> 4 2seater ab 0
#> 5 minivan bc 0
#> 6 suv cd 0
ggplot() +
geom_jitter(
data = mpg,
aes(
x = class,
y = hwy
),
width = 0.1
) +
geom_text(
data = tukey_letters,
aes(
x = class,
y = hwy,
label = Letters
)
) +
coord_flip()
Here we split the statistical analysis by two grouping variables (“cut” and “color”), set the alpha to 0.05 and print the letters 0.5 standard deviations below the respective minimum value.
library(tukeygrps)
library(tidyverse)
data(diamonds)
diamonds <- diamonds %>%
filter(cut %in% c("Ideal", "Premium", "Very Good") & color %in% c("D", "E", "F"))
head(diamonds)
#> # A tibble: 6 x 10
#> carat cut color clarity depth table price x y z
#> <dbl> <ord> <ord> <ord> <dbl> <dbl> <int> <dbl> <dbl> <dbl>
#> 1 0.23 Ideal E SI2 61.5 55 326 3.95 3.98 2.43
#> 2 0.21 Premium E SI1 59.8 61 326 3.89 3.84 2.31
#> 3 0.22 Premium F SI1 60.4 61 342 3.88 3.84 2.33
#> 4 0.2 Premium E SI2 60.2 62 345 3.79 3.75 2.27
#> 5 0.32 Premium E I1 60.9 58 345 4.38 4.42 2.68
#> 6 0.23 Very Good E VS2 63.8 55 352 3.85 3.92 2.48
tukey_letters <- letter_groups(
diamonds,
price,
clarity,
"tukey",
cut,
color,
print_position = "below",
print_adjust = 0.5,
stat_alpha = 0.05,
)
head(tukey_letters)
#> # A tibble: 6 x 5
#> # Groups: cut, color [1]
#> cut color Letters clarity price
#> <ord> <ord> <chr> <chr> <dbl>
#> 1 Very Good D a IF -591.
#> 2 Very Good D b SI2 -1349.
#> 3 Very Good D c SI1 -1287.
#> 4 Very Good D c VS2 -1405.
#> 5 Very Good D bc VVS1 -1304.
#> 6 Very Good D c VS1 -1405.
ggplot() +
geom_jitter(
data = diamonds,
aes(
x = clarity,
y = price
),
size = 1,
width = 0.1,
alpha = 0.25
) +
geom_boxplot(
data = diamonds,
aes(
x = clarity,
y = price
),
outlier.alpha = 0,
fill = rgb(1, 1, 1, 0.5)
) +
geom_text(
data = tukey_letters,
aes(
x = clarity,
y = price,
label = Letters
),
size = 3
) +
facet_grid(cut ~ color) +
coord_flip()
In case the above requirements for parametric tests are not met, we can fall back to the non-parametric Kruskal–Wallis test followed by Dunn’s test and p-value adjustment for multiple comparisons. Here we place the letter codes 0.5 standard deviations above the maximum values.
library(tukeygrps)
library(tidyverse)
data(diamonds)
diamonds <- diamonds %>%
filter(cut %in% c("Ideal", "Premium", "Very Good") & color %in% c("D", "E", "F"))
kruskal_letters <- letter_groups(
diamonds,
price,
clarity,
"kruskal",
cut,
color,
print_position = "above",
print_adjust = 0.5,
p_adj_method = "holm"
)
head(kruskal_letters)
ggplot() +
geom_jitter(
data = diamonds,
aes(
x = clarity,
y = price
),
size = 1,
width = 0.1,
alpha = 0.25
) +
geom_boxplot(
data = diamonds,
aes(
x = clarity,
y = price
),
outlier.alpha = 0,
fill = rgb(1, 1, 1, 0.5)
) +
geom_text(
data = kruskal_letters,
aes(
x = clarity,
y = price,
label = Letters
),
size = 3
) +
facet_grid(cut ~ color) +
coord_flip()