- Deposit data to a public repository
- Present metadata clearly
- Share workflow components information with a version control system
- Use open-source and downloadable software
- Use virtual machine or software container
- Document runtime hardware information
- Semantic annotation for workflow components
- Use workflow automation or literate programming
- Public repository used to deposit data: MetaboLights
- Unique identifier of data deposited to a public repository: MTBLS1
- Template used to present metadata in the manuscript: Cell STAR★Methods
- Version control system used to share computational resource information: GitHub
- Used software names along with versions (if applicable) and URL used in the analysis: ProteoWizard-msConvert (https://proteowizard.sourceforge.io/tools.shtml), MS-DIAL v4.46 (http://prime.psc.riken.jp/compms/msdial/main.html),
- URL of shared project file: https://s3.console.aws.amazon.com/s3/buckets/example
- URL of shared virtual machine or software container used for the analysis: https://hub.docker.com/_/python
- Model of runtime CPU: Intel Core i7
- Number of runtime CPU: 6
- Model runtime GPU: NVDIA GeForce GTX 980 Ti
- Number of runtime GPU: 2
- Ontology used for semantic annotation of the analysis workflow: EDAM Ontology
- Tool used for workflow automation or literate programming: Nextflow v20.07.1 (https://www.nextflow.io/index.html)
- Order of running workflow components (specify input and output of each step):
- Feed input data (.RAW format) to ProteoWizard-msConvert to convert data from to .mzML format, store the output to
data/
folder - Feed input data from last step to Nextflow pipeline by typing the following command, output will be stored to
results/
folder:
nextflow main.nf
- ...
- Feed input data (.RAW format) to ProteoWizard-msConvert to convert data from to .mzML format, store the output to