Skip to content

Commit

Permalink
chore: move BitVec.udiv/umod/sdiv/smod after add/sub/mul/lt
Browse files Browse the repository at this point in the history
Divison proofs are more likely to depend on add/sub/mul proofs than the other
way around. This cleans up #5609, which added division proofs that rely on
negation to already be defined.
  • Loading branch information
tobiasgrosser committed Oct 13, 2024
1 parent 5d65530 commit de56269
Showing 1 changed file with 110 additions and 110 deletions.
220 changes: 110 additions & 110 deletions src/Init/Data/BitVec/Lemmas.lean
Original file line number Diff line number Diff line change
Expand Up @@ -1377,104 +1377,6 @@ theorem not_sshiftRight_not {x : BitVec w} {n : Nat} :
@[simp]
theorem sshiftRight_eq' (x : BitVec w) : x.sshiftRight' y = x.sshiftRight y.toNat := rfl

/-! ### udiv -/

theorem udiv_def {x y : BitVec n} : x / y = BitVec.ofNat n (x.toNat / y.toNat) := by
have h : x.toNat / y.toNat < 2 ^ n := Nat.lt_of_le_of_lt (Nat.div_le_self ..) (by omega)
rw [← udiv_eq]
simp [udiv, bv_toNat, h, Nat.mod_eq_of_lt]

@[simp, bv_toNat]
theorem toNat_udiv {x y : BitVec n} : (x / y).toNat = x.toNat / y.toNat := by
rw [udiv_def]
by_cases h : y = 0
· simp [h]
· rw [toNat_ofNat, Nat.mod_eq_of_lt]
exact Nat.lt_of_le_of_lt (Nat.div_le_self ..) (by omega)

@[simp]
theorem udiv_zero {x : BitVec n} : x / 0#n = 0#n := by
simp [udiv_def]

/-! ### umod -/

theorem umod_def {x y : BitVec n} :
x % y = BitVec.ofNat n (x.toNat % y.toNat) := by
rw [← umod_eq]
have h : x.toNat % y.toNat < 2 ^ n := Nat.lt_of_le_of_lt (Nat.mod_le _ _) x.isLt
simp [umod, bv_toNat, Nat.mod_eq_of_lt h]

@[simp, bv_toNat]
theorem toNat_umod {x y : BitVec n} :
(x % y).toNat = x.toNat % y.toNat := rfl

@[simp]
theorem umod_zero {x : BitVec n} : x % 0#n = x := by
simp [umod_def]

/-! ### sdiv -/

/-- Equation theorem for `sdiv` in terms of `udiv`. -/
theorem sdiv_eq (x y : BitVec w) : x.sdiv y =
match x.msb, y.msb with
| false, false => udiv x y
| false, true => - (x.udiv (- y))
| true, false => - ((- x).udiv y)
| true, true => (- x).udiv (- y) := by
rw [BitVec.sdiv]
rcases x.msb <;> rcases y.msb <;> simp

@[bv_toNat]
theorem toNat_sdiv {x y : BitVec w} : (x.sdiv y).toNat =
match x.msb, y.msb with
| false, false => (udiv x y).toNat
| false, true => (- (x.udiv (- y))).toNat
| true, false => (- ((- x).udiv y)).toNat
| true, true => ((- x).udiv (- y)).toNat := by
simp only [sdiv_eq, toNat_udiv]
by_cases h : x.msb <;> by_cases h' : y.msb <;> simp [h, h']

theorem sdiv_eq_and (x y : BitVec 1) : x.sdiv y = x &&& y := by
have hx : x = 0#1 ∨ x = 1#1 := by bv_omega
have hy : y = 0#1 ∨ y = 1#1 := by bv_omega
rcases hx with rfl | rfl <;>
rcases hy with rfl | rfl <;>
rfl

/-! ### smod -/

/-- Equation theorem for `smod` in terms of `umod`. -/
theorem smod_eq (x y : BitVec w) : x.smod y =
match x.msb, y.msb with
| false, false => x.umod y
| false, true =>
let u := x.umod (- y)
(if u = 0#w then u else u + y)
| true, false =>
let u := umod (- x) y
(if u = 0#w then u else y - u)
| true, true => - ((- x).umod (- y)) := by
rw [BitVec.smod]
rcases x.msb <;> rcases y.msb <;> simp

@[bv_toNat]
theorem toNat_smod {x y : BitVec w} : (x.smod y).toNat =
match x.msb, y.msb with
| false, false => (x.umod y).toNat
| false, true =>
let u := x.umod (- y)
(if u = 0#w then u.toNat else (u + y).toNat)
| true, false =>
let u := (-x).umod y
(if u = 0#w then u.toNat else (y - u).toNat)
| true, true => (- ((- x).umod (- y))).toNat := by
simp only [smod_eq, toNat_umod]
by_cases h : x.msb <;> by_cases h' : y.msb
<;> by_cases h'' : (-x).umod y = 0#w <;> by_cases h''' : x.umod (-y) = 0#w
<;> simp only [h, h', h'', h''']
<;> simp only [umod, toNat_eq, toNat_ofNatLt, toNat_ofNat, Nat.zero_mod] at h'' h'''
<;> simp [h'', h''']

/-! ### signExtend -/

/-- Equation theorem for `Int.sub` when both arguments are `Int.ofNat` -/
Expand Down Expand Up @@ -2098,18 +2000,6 @@ theorem sub_eq_xor {a b : BitVec 1} : a - b = a ^^^ b := by
have hb : b = 0 ∨ b = 1 := eq_zero_or_eq_one _
rcases ha with h | h <;> (rcases hb with h' | h' <;> (simp [h, h']))

@[simp]
theorem sdiv_zero {x : BitVec n} : x.sdiv 0#n = 0#n := by
simp only [sdiv_eq, msb_zero]
rcases x.msb with msb | msb <;> apply eq_of_toNat_eq <;> simp

@[simp]
theorem smod_zero {x : BitVec n} : x.smod 0#n = x := by
simp only [smod_eq, msb_zero]
rcases x.msb with msb | msb <;> apply eq_of_toNat_eq
· simp
· by_cases h : x = 0#n <;> simp [h]

theorem not_neg (x : BitVec w) : ~~~(-x) = x + -1#w := by
rcases w with _ | w
· apply Subsingleton.elim
Expand Down Expand Up @@ -2268,6 +2158,116 @@ theorem not_lt_iff_le {x y : BitVec w} : (¬ x < y) ↔ y ≤ x := by
constructor <;>
(intro h; simp only [lt_def, Nat.not_lt, le_def] at h ⊢; omega)

/-! ### udiv -/

theorem udiv_def {x y : BitVec n} : x / y = BitVec.ofNat n (x.toNat / y.toNat) := by
have h : x.toNat / y.toNat < 2 ^ n := Nat.lt_of_le_of_lt (Nat.div_le_self ..) (by omega)
rw [← udiv_eq]
simp [udiv, bv_toNat, h, Nat.mod_eq_of_lt]

@[simp, bv_toNat]
theorem toNat_udiv {x y : BitVec n} : (x / y).toNat = x.toNat / y.toNat := by
rw [udiv_def]
by_cases h : y = 0
· simp [h]
· rw [toNat_ofNat, Nat.mod_eq_of_lt]
exact Nat.lt_of_le_of_lt (Nat.div_le_self ..) (by omega)

@[simp]
theorem udiv_zero {x : BitVec n} : x / 0#n = 0#n := by
simp [udiv_def]

/-! ### umod -/

theorem umod_def {x y : BitVec n} :
x % y = BitVec.ofNat n (x.toNat % y.toNat) := by
rw [← umod_eq]
have h : x.toNat % y.toNat < 2 ^ n := Nat.lt_of_le_of_lt (Nat.mod_le _ _) x.isLt
simp [umod, bv_toNat, Nat.mod_eq_of_lt h]

@[simp, bv_toNat]
theorem toNat_umod {x y : BitVec n} :
(x % y).toNat = x.toNat % y.toNat := rfl

@[simp]
theorem umod_zero {x : BitVec n} : x % 0#n = x := by
simp [umod_def]

/-! ### sdiv -/

/-- Equation theorem for `sdiv` in terms of `udiv`. -/
theorem sdiv_eq (x y : BitVec w) : x.sdiv y =
match x.msb, y.msb with
| false, false => udiv x y
| false, true => - (x.udiv (- y))
| true, false => - ((- x).udiv y)
| true, true => (- x).udiv (- y) := by
rw [BitVec.sdiv]
rcases x.msb <;> rcases y.msb <;> simp

@[bv_toNat]
theorem toNat_sdiv {x y : BitVec w} : (x.sdiv y).toNat =
match x.msb, y.msb with
| false, false => (udiv x y).toNat
| false, true => (- (x.udiv (- y))).toNat
| true, false => (- ((- x).udiv y)).toNat
| true, true => ((- x).udiv (- y)).toNat := by
simp only [sdiv_eq, toNat_udiv]
by_cases h : x.msb <;> by_cases h' : y.msb <;> simp [h, h']

theorem sdiv_eq_and (x y : BitVec 1) : x.sdiv y = x &&& y := by
have hx : x = 0#1 ∨ x = 1#1 := by bv_omega
have hy : y = 0#1 ∨ y = 1#1 := by bv_omega
rcases hx with rfl | rfl <;>
rcases hy with rfl | rfl <;>
rfl

@[simp]
theorem sdiv_zero {x : BitVec n} : x.sdiv 0#n = 0#n := by
simp only [sdiv_eq, msb_zero]
rcases x.msb with msb | msb <;> apply eq_of_toNat_eq <;> simp

/-! ### smod -/

/-- Equation theorem for `smod` in terms of `umod`. -/
theorem smod_eq (x y : BitVec w) : x.smod y =
match x.msb, y.msb with
| false, false => x.umod y
| false, true =>
let u := x.umod (- y)
(if u = 0#w then u else u + y)
| true, false =>
let u := umod (- x) y
(if u = 0#w then u else y - u)
| true, true => - ((- x).umod (- y)) := by
rw [BitVec.smod]
rcases x.msb <;> rcases y.msb <;> simp

@[bv_toNat]
theorem toNat_smod {x y : BitVec w} : (x.smod y).toNat =
match x.msb, y.msb with
| false, false => (x.umod y).toNat
| false, true =>
let u := x.umod (- y)
(if u = 0#w then u.toNat else (u + y).toNat)
| true, false =>
let u := (-x).umod y
(if u = 0#w then u.toNat else (y - u).toNat)
| true, true => (- ((- x).umod (- y))).toNat := by
simp only [smod_eq, toNat_umod]
by_cases h : x.msb <;> by_cases h' : y.msb
<;> by_cases h'' : (-x).umod y = 0#w <;> by_cases h''' : x.umod (-y) = 0#w
<;> simp only [h, h', h'', h''']
<;> simp only [umod, toNat_eq, toNat_ofNatLt, toNat_ofNat, Nat.zero_mod] at h'' h'''
<;> simp [h'', h''']

@[simp]
theorem smod_zero {x : BitVec n} : x.smod 0#n = x := by
simp only [smod_eq, msb_zero]
rcases x.msb with msb | msb <;> apply eq_of_toNat_eq
· simp
· by_cases h : x = 0#n <;> simp [h]

/-! ### ofBoolList -/

@[simp] theorem getMsbD_ofBoolListBE : (ofBoolListBE bs).getMsbD i = bs.getD i false := by
Expand Down

0 comments on commit de56269

Please sign in to comment.