Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Merged by Bors] - feat: add Continuous.image_connectedComponentIn_subset #9983

Closed
wants to merge 2 commits into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
12 changes: 12 additions & 0 deletions Mathlib/Topology/Connected/Basic.lean
Original file line number Diff line number Diff line change
Expand Up @@ -707,11 +707,23 @@ theorem Continuous.image_connectedComponent_subset [TopologicalSpace β] {f : α
((mem_image f (connectedComponent a) (f a)).2 ⟨a, mem_connectedComponent, rfl⟩)
#align continuous.image_connected_component_subset Continuous.image_connectedComponent_subset

theorem Continuous.image_connectedComponentIn_subset [TopologicalSpace β] {f : α → β} {s : Set α}
grunweg marked this conversation as resolved.
Show resolved Hide resolved
{a : α} (hf : Continuous f) (hx : a ∈ s) :
f '' connectedComponentIn s a ⊆ connectedComponentIn (f '' s) (f a) :=
(isPreconnected_connectedComponentIn.image _ hf.continuousOn).subset_connectedComponentIn
(mem_image_of_mem _ <| mem_connectedComponentIn hx)
(image_subset _ <| connectedComponentIn_subset _ _)

theorem Continuous.mapsTo_connectedComponent [TopologicalSpace β] {f : α → β} (h : Continuous f)
(a : α) : MapsTo f (connectedComponent a) (connectedComponent (f a)) :=
mapsTo'.2 <| h.image_connectedComponent_subset a
#align continuous.maps_to_connected_component Continuous.mapsTo_connectedComponent

theorem Continuous.mapsTo_connectedComponentIn [TopologicalSpace β] {f : α → β} {s : Set α}
(h : Continuous f) {a : α} (hx : a ∈ s) :
MapsTo f (connectedComponentIn s a) (connectedComponentIn (f '' s) (f a)) :=
mapsTo'.2 <| image_connectedComponentIn_subset h hx

theorem irreducibleComponent_subset_connectedComponent {x : α} :
irreducibleComponent x ⊆ connectedComponent x :=
isIrreducible_irreducibleComponent.isConnected.subset_connectedComponent mem_irreducibleComponent
Expand Down
7 changes: 7 additions & 0 deletions Mathlib/Topology/Homeomorph.lean
Original file line number Diff line number Diff line change
Expand Up @@ -318,6 +318,13 @@ theorem isConnected_preimage {s : Set Y} (h : X ≃ₜ Y) :
IsConnected (h ⁻¹' s) ↔ IsConnected s := by
rw [← image_symm, isConnected_image]

theorem image_connectedComponentIn {s : Set X} (h : X ≃ₜ Y) {x : X} (hx : x ∈ s) :
h '' connectedComponentIn s x = connectedComponentIn (h '' s) (h x) := by
refine (h.continuous.image_connectedComponentIn_subset hx).antisymm ?_
have := h.symm.continuous.image_connectedComponentIn_subset (mem_image_of_mem h hx)
rwa [image_subset_iff, h.preimage_symm, h.image_symm, h.preimage_image, h.symm_apply_apply]
at this

@[simp]
theorem comap_cocompact (h : X ≃ₜ Y) : comap h (cocompact Y) = cocompact X :=
(comap_cocompact_le h.continuous).antisymm <|
Expand Down
Loading