Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat(CategoryTheory/Monoidal): add lemmas for whiskering operators #8191

Merged
merged 2 commits into from
Nov 7, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
12 changes: 12 additions & 0 deletions Mathlib/Algebra/Category/ModuleCat/Monoidal/Basic.lean
Original file line number Diff line number Diff line change
Expand Up @@ -230,6 +230,18 @@ theorem hom_apply {K L M N : ModuleCat.{u} R} (f : K ⟶ L) (g : M ⟶ N) (k : K
rfl
#align Module.monoidal_category.hom_apply ModuleCat.MonoidalCategory.hom_apply

@[simp]
theorem whiskerLeft_apply (L : ModuleCat.{u} R) {M N : ModuleCat.{u} R} (f : M ⟶ N)
(l : L) (m : M) :
(L ◁ f) (l ⊗ₜ m) = l ⊗ₜ f m :=
rfl

@[simp]
theorem whiskerRight_apply {L M : ModuleCat.{u} R} (f : L ⟶ M) (N : ModuleCat.{u} R)
(l : L) (n : N) :
(f ▷ N) (l ⊗ₜ n) = f l ⊗ₜ n :=
rfl

@[simp]
theorem leftUnitor_hom_apply {M : ModuleCat.{u} R} (r : R) (m : M) :
((λ_ M).hom : 𝟙_ (ModuleCat R) ⊗ M ⟶ M) (r ⊗ₜ[R] m) = r • m :=
Expand Down
12 changes: 12 additions & 0 deletions Mathlib/Algebra/Category/ModuleCat/Monoidal/Symmetric.lean
Original file line number Diff line number Diff line change
Expand Up @@ -39,6 +39,18 @@ theorem braiding_naturality {X₁ X₂ Y₁ Y₂ : ModuleCat.{u} R} (f : X₁
set_option linter.uppercaseLean3 false in
#align Module.monoidal_category.braiding_naturality ModuleCat.MonoidalCategory.braiding_naturality

@[simp]
theorem braiding_naturality_left {X Y : ModuleCat R} (f : X ⟶ Y) (Z : ModuleCat R) :
f ▷ Z ≫ (braiding Y Z).hom = (braiding X Z).hom ≫ Z ◁ f := by
simp_rw [← id_tensorHom]
apply braiding_naturality

@[simp]
theorem braiding_naturality_right (X : ModuleCat R) {Y Z : ModuleCat R} (f : Y ⟶ Z) :
X ◁ f ≫ (braiding X Z).hom = (braiding X Y).hom ≫ f ▷ X := by
simp_rw [← id_tensorHom]
apply braiding_naturality

@[simp]
theorem hexagon_forward (X Y Z : ModuleCat.{u} R) :
(α_ X Y Z).hom ≫ (braiding X _).hom ≫ (α_ Y Z X).hom =
Expand Down
10 changes: 10 additions & 0 deletions Mathlib/CategoryTheory/Monoidal/Types/Basic.lean
Original file line number Diff line number Diff line change
Expand Up @@ -33,6 +33,16 @@ theorem tensor_apply {W X Y Z : Type u} (f : W ⟶ X) (g : Y ⟶ Z) (p : W ⊗ Y
rfl
#align category_theory.tensor_apply CategoryTheory.tensor_apply

@[simp]
theorem whiskerLeft_apply (X : Type u) {Y Z : Type u} (f : Y ⟶ Z) (p : X ⊗ Y) :
(X ◁ f) p = (p.1, f p.2) :=
rfl

@[simp]
theorem whiskerRight_apply {Y Z : Type u} (f : Y ⟶ Z) (X : Type u) (p : Y ⊗ X) :
(f ▷ X) p = (f p.1, p.2) :=
rfl

@[simp]
theorem leftUnitor_hom_apply {X : Type u} {x : X} {p : PUnit} :
((λ_ X).hom : 𝟙_ (Type u) ⊗ X → X) (p, x) = x :=
Expand Down
14 changes: 12 additions & 2 deletions Mathlib/RepresentationTheory/Action.lean
Original file line number Diff line number Diff line change
Expand Up @@ -504,10 +504,20 @@ set_option linter.uppercaseLean3 false in
#align Action.tensor_rho Action.tensor_rho

@[simp]
theorem tensorHom {W X Y Z : Action V G} (f : W ⟶ X) (g : Y ⟶ Z) : (f ⊗ g).hom = f.hom ⊗ g.hom :=
theorem tensor_hom {W X Y Z : Action V G} (f : W ⟶ X) (g : Y ⟶ Z) : (f ⊗ g).hom = f.hom ⊗ g.hom :=
rfl
set_option linter.uppercaseLean3 false in
#align Action.tensor_hom Action.tensorHom
#align Action.tensor_hom Action.tensor_hom

@[simp]
theorem whiskerLeft_hom (X : Action V G) {Y Z : Action V G} (f : Y ⟶ Z) :
(X ◁ f).hom = X.V ◁ f.hom :=
rfl

@[simp]
theorem whiskerRight_hom {X Y : Action V G} (f : X ⟶ Y) (Z : Action V G) :
(f ▷ Z).hom = f.hom ▷ Z.V :=
rfl

-- porting note: removed @[simp] as the simpNF linter complains
theorem associator_hom_hom {X Y Z : Action V G} :
Expand Down
Loading