Skip to content

Commit

Permalink
feat: link Dilation to Isometry and Homeomorph (#9980)
Browse files Browse the repository at this point in the history
  • Loading branch information
j-loreaux committed Jan 26, 2024
1 parent 1fec3c4 commit e0312d3
Show file tree
Hide file tree
Showing 2 changed files with 58 additions and 1 deletion.
17 changes: 16 additions & 1 deletion Mathlib/Topology/MetricSpace/Dilation.lean
Original file line number Diff line number Diff line change
Expand Up @@ -4,8 +4,9 @@ Released under Apache 2.0 license as described in the file LICENSE.
Dilations of emetric and metric spaces
Authors: Hanting Zhang
-/
import Mathlib.Topology.MetricSpace.Lipschitz
import Mathlib.Topology.MetricSpace.Antilipschitz
import Mathlib.Topology.MetricSpace.Isometry
import Mathlib.Topology.MetricSpace.Lipschitz
import Mathlib.Data.FunLike.Basic

#align_import topology.metric_space.dilation from "leanprover-community/mathlib"@"93f880918cb51905fd51b76add8273cbc27718ab"
Expand Down Expand Up @@ -264,6 +265,20 @@ variable [DilationClass F α β] [DilationClass G β γ]

variable (f : F) (g : G) {x y z : α} {s : Set α}

/-- Every isometry is a dilation of ratio `1`. -/
@[simps]
def _root_.Isometry.toDilation (f : α → β) (hf : Isometry f) : α →ᵈ β where
toFun := f
edist_eq' := ⟨1, one_ne_zero, by simpa using hf⟩

@[simp]
lemma _root_.Isometry.toDilation_ratio {f : α → β} {hf : Isometry f} : ratio hf.toDilation = 1 := by
by_cases h : ∀ x y : α, edist x y = 0 ∨ edist x y = ⊤
· exact ratio_of_trivial hf.toDilation h
· push_neg at h
obtain ⟨x, y, h₁, h₂⟩ := h
exact ratio_unique h₁ h₂ (by simp [hf x y]) |>.symm

theorem lipschitz : LipschitzWith (ratio f) (f : α → β) := fun x y => (edist_eq f x y).le
#align dilation.lipschitz Dilation.lipschitz

Expand Down
42 changes: 42 additions & 0 deletions Mathlib/Topology/MetricSpace/DilationEquiv.lean
Original file line number Diff line number Diff line change
Expand Up @@ -89,6 +89,8 @@ def Simps.symm_apply (e : X ≃ᵈ Y) : Y → X := e.symm

initialize_simps_projections DilationEquiv (toFun → apply, invFun → symm_apply)

lemma ratio_toDilation (e : X ≃ᵈ Y) : ratio e.toDilation = ratio e := rfl

/-- Identity map as a `DilationEquiv`. -/
@[simps! (config := .asFn) apply]
def refl (X : Type*) [PseudoEMetricSpace X] : X ≃ᵈ X where
Expand Down Expand Up @@ -176,6 +178,46 @@ def toPerm : (X ≃ᵈ X) →* Equiv.Perm X where
theorem coe_pow (e : X ≃ᵈ X) (n : ℕ) : ⇑(e ^ n) = e^[n] := by
rw [← coe_toEquiv, ← toPerm_apply, map_pow, Equiv.Perm.coe_pow]; rfl

-- TODO: Once `IsometryEquiv` follows the `*EquivClass` pattern, replace this with an instance
-- of `DilationEquivClass` assuming `IsometryEquivClass`.
/-- Every isometry equivalence is a dilation equivalence of ratio `1`. -/
def _root_.IsometryEquiv.toDilationEquiv (e : X ≃ᵢ Y) : X ≃ᵈ Y where
edist_eq' := ⟨1, one_ne_zero, by simpa using e.isometry⟩
__ := e.toEquiv

@[simp]
lemma _root_.IsometryEquiv.toDilationEquiv_apply (e : X ≃ᵢ Y) (x : X) :
e.toDilationEquiv x = e x :=
rfl

@[simp]
lemma _root_.IsometryEquiv.toDilationEquiv_symm (e : X ≃ᵢ Y) :
e.toDilationEquiv.symm = e.symm.toDilationEquiv :=
rfl

@[simp]
lemma _root_.IsometryEquiv.toDilationEquiv_toDilation (e : X ≃ᵢ Y) :
(e.toDilationEquiv.toDilation : X →ᵈ Y) = e.isometry.toDilation :=
rfl

@[simp]
lemma _root_.IsometryEquiv.toDilationEquiv_ratio (e : X ≃ᵢ Y) : ratio e.toDilationEquiv = 1 := by
rw [← ratio_toDilation, IsometryEquiv.toDilationEquiv_toDilation, Isometry.toDilation_ratio]

/-- Reinterpret a `DilationEquiv` as a homeomorphism. -/
def toHomeomorph (e : X ≃ᵈ Y) : X ≃ₜ Y where
continuous_toFun := Dilation.toContinuous e
continuous_invFun := Dilation.toContinuous e.symm
__ := e.toEquiv

@[simp]
lemma coe_toHomeomorph (e : X ≃ᵈ Y) : ⇑e.toHomeomorph = e :=
rfl

@[simp]
lemma toHomeomorph_symm (e : X ≃ᵈ Y) : e.toHomeomorph.symm = e.symm.toHomeomorph :=
rfl

end PseudoEMetricSpace

section PseudoMetricSpace
Expand Down

0 comments on commit e0312d3

Please sign in to comment.