Skip to content

Commit

Permalink
Small golf; add contMDiffOn_finprod.
Browse files Browse the repository at this point in the history
  • Loading branch information
grunweg committed Jan 24, 2024
1 parent 21f5613 commit c5f1754
Showing 1 changed file with 8 additions and 5 deletions.
13 changes: 8 additions & 5 deletions Mathlib/Geometry/Manifold/Algebra/Monoid.lean
Original file line number Diff line number Diff line change
Expand Up @@ -349,7 +349,6 @@ theorem contMDiffWithinAt_finset_prod (h : ∀ i ∈ t, ContMDiffWithinAt I' I n
#align cont_mdiff_within_at_finset_prod contMDiffWithinAt_finset_prod
#align cont_mdiff_within_at_finset_sum contMDiffWithinAt_finset_sum


@[to_additive]
theorem ContMDiffAt.prod (h : ∀ i ∈ t, ContMDiffAt I' I n (f i) x₀) :
ContMDiffAt I' I n (fun x ↦ ∏ i in t, f i x) x₀ := by
Expand All @@ -376,6 +375,12 @@ theorem contMDiffAt_finset_prod (h : ∀ i ∈ t, ContMDiffAt I' I n (f i) x) :
#align cont_mdiff_at_finset_prod contMDiffAt_finset_prod
#align cont_mdiff_at_finset_sum contMDiffAt_finset_sum

@[to_additive]

Check warning on line 378 in Mathlib/Geometry/Manifold/Algebra/Monoid.lean

View workflow job for this annotation

GitHub Actions / Build

declaration uses 'sorry'
theorem contMDiffOn_finprod

Check warning on line 379 in Mathlib/Geometry/Manifold/Algebra/Monoid.lean

View workflow job for this annotation

GitHub Actions / Build

declaration uses 'sorry'
(lf : LocallyFinite fun i ↦ Function.mulSupport <| f i) (h : ∀ i, ContMDiffOn I' I n (f i) s) :
ContMDiffOn I' I n (fun x ↦ ∏ᶠ i, f i x) s := fun x hx =>
contMDiffWithinAt_finprod lf sorry -- fun i hi => h i hi x hx

@[to_additive]
theorem contMDiffOn_finset_prod' (h : ∀ i ∈ t, ContMDiffOn I' I n (f i) s) :
ContMDiffOn I' I n (∏ i in t, f i) s := fun x hx =>
Expand Down Expand Up @@ -410,10 +415,8 @@ theorem contMDiff_finset_prod (h : ∀ i ∈ t, ContMDiff I' I n (f i)) :

@[to_additive]
theorem contMDiff_finprod (h : ∀ i, ContMDiff I' I n (f i))
(hfin : LocallyFinite fun i => mulSupport (f i)) : ContMDiff I' I n fun x => ∏ᶠ i, f i x := by
intro x
rcases finprod_eventually_eq_prod hfin x with ⟨s, hs⟩
exact (contMDiff_finset_prod (fun i _ => h i) x).congr_of_eventuallyEq hs
(hfin : LocallyFinite fun i => mulSupport (f i)) : ContMDiff I' I n fun x => ∏ᶠ i, f i x :=
fun x ↦ contMDiffAt_finprod hfin fun i ↦ h i x
#align cont_mdiff_finprod contMDiff_finprod
#align cont_mdiff_finsum contMDiff_finsum

Expand Down

0 comments on commit c5f1754

Please sign in to comment.