Skip to content

Commit

Permalink
chore(Topology/../Order): weaken TC assumptions (#7553)
Browse files Browse the repository at this point in the history
Generalize some lemmas from `ConditionallyCompleteLinearOrder`
to `LinearOrder`.
Also drop an unused `variable`.
  • Loading branch information
urkud committed Oct 6, 2023
1 parent c151d07 commit 8ec1ec7
Showing 1 changed file with 10 additions and 4 deletions.
14 changes: 10 additions & 4 deletions Mathlib/Topology/Algebra/Order/Compact.lean
Original file line number Diff line number Diff line change
Expand Up @@ -381,10 +381,10 @@ end ConditionallyCompleteLinearOrder
### Min and max elements of a compact set
-/

section OrderClosedTopology
section InfSup

variable {α β γ : Type*} [ConditionallyCompleteLinearOrder α] [TopologicalSpace α]
[TopologicalSpace β] [TopologicalSpace γ]
variable {α β : Type*} [ConditionallyCompleteLinearOrder α] [TopologicalSpace α]
[TopologicalSpace β]

theorem IsCompact.sInf_mem [ClosedIicTopology α] {s : Set α} (hs : IsCompact s)
(ne_s : s.Nonempty) : sInf s ∈ s :=
Expand Down Expand Up @@ -442,6 +442,12 @@ theorem IsCompact.exists_sSup_image_eq [ClosedIciTopology α] {s : Set β} (hs :
IsCompact.exists_sInf_image_eq (α := αᵒᵈ) hs ne_s
#align is_compact.exists_Sup_image_eq IsCompact.exists_sSup_image_eq

end InfSup

section ExistsExtr

variable {α β : Type*} [LinearOrder α] [TopologicalSpace α] [TopologicalSpace β]

theorem IsCompact.exists_isMinOn_mem_subset [ClosedIicTopology α] {f : β → α} {s t : Set β}
{z : β} (ht : IsCompact t) (hf : ContinuousOn f t) (hz : z ∈ t)
(hfz : ∀ z' ∈ t \ s, f z < f z') : ∃ x ∈ s, IsMinOn f t x :=
Expand Down Expand Up @@ -477,7 +483,7 @@ theorem IsCompact.exists_isLocalMax_mem_open [ClosedIciTopology α] {f : β →
let ⟨x, hxs, h⟩ := ht.exists_isMaxOn_mem_subset hf hz hfz
⟨x, hxs, h.isLocalMax <| mem_nhds_iff.2 ⟨s, hst, hs, hxs⟩⟩

end OrderClosedTopology
end ExistsExtr

variable {α β γ : Type*} [ConditionallyCompleteLinearOrder α] [TopologicalSpace α]
[OrderTopology α] [TopologicalSpace β] [TopologicalSpace γ]
Expand Down

0 comments on commit 8ec1ec7

Please sign in to comment.