Skip to content

Commit

Permalink
feat(CategoryTheory/Monoidal): redefine tensorLeft by using whisker…
Browse files Browse the repository at this point in the history
…ing (#10898)

Extracted from #6307
  • Loading branch information
yuma-mizuno committed Feb 29, 2024
1 parent efdfa67 commit 13e1315
Show file tree
Hide file tree
Showing 8 changed files with 430 additions and 413 deletions.
6 changes: 3 additions & 3 deletions Mathlib/CategoryTheory/Closed/FunctorCategory.lean
Original file line number Diff line number Diff line change
Expand Up @@ -41,7 +41,7 @@ def closedUnit (F : D ⥤ C) : 𝟭 (D ⥤ C) ⟶ tensorLeft F ⋙ closedIhom F
dsimp
simp only [ihom.coev_naturality, closedIhom_obj_map, Monoidal.tensorObj_map]
dsimp
rw [coev_app_comp_pre_app_assoc, ← Functor.map_comp]
rw [coev_app_comp_pre_app_assoc, ← Functor.map_comp, tensorHom_def]
simp }
#align category_theory.functor.closed_unit CategoryTheory.Functor.closedUnit

Expand All @@ -55,8 +55,8 @@ def closedCounit (F : D ⥤ C) : closedIhom F ⋙ tensorLeft F ⟶ 𝟭 (D ⥤ C
intro X Y f
dsimp
simp only [closedIhom_obj_map, pre_comm_ihom_map]
rw [← tensor_id_comp_id_tensor, id_tensor_comp]
simp [tensor_id_comp_id_tensor_assoc] }
rw [tensorHom_def]
simp }
#align category_theory.functor.closed_counit CategoryTheory.Functor.closedCounit

/-- If `C` is a monoidal closed category and `D` is a groupoid, then every functor `F : D ⥤ C` is
Expand Down
30 changes: 15 additions & 15 deletions Mathlib/CategoryTheory/Closed/Monoidal.lean
Original file line number Diff line number Diff line change
Expand Up @@ -72,7 +72,7 @@ def unitClosed : Closed (𝟙_ C) where
right_inv := by aesop_cat }
homEquiv_naturality_left_symm := fun f g => by
dsimp
rw [leftUnitor_naturality_assoc]
rw [leftUnitor_naturality'_assoc]
-- This used to be automatic before leanprover/lean4#2644
homEquiv_naturality_right := by -- aesop failure
dsimp
Expand Down Expand Up @@ -118,13 +118,13 @@ theorem ihom_adjunction_unit : (ihom.adjunction A).unit = coev A :=

@[reassoc (attr := simp)]
theorem ev_naturality {X Y : C} (f : X ⟶ Y) :
(𝟙 A ⊗ (ihom A).map f) ≫ (ev A).app Y = (ev A).app X ≫ f :=
A ◁ (ihom A).map f ≫ (ev A).app Y = (ev A).app X ≫ f :=
(ev A).naturality f
#align category_theory.ihom.ev_naturality CategoryTheory.ihom.ev_naturality

@[reassoc (attr := simp)]
theorem coev_naturality {X Y : C} (f : X ⟶ Y) :
f ≫ (coev A).app Y = (coev A).app X ≫ (ihom A).map (𝟙 A ⊗ f) :=
f ≫ (coev A).app Y = (coev A).app X ≫ (ihom A).map (A ◁ f) :=
(coev A).naturality f
#align category_theory.ihom.coev_naturality CategoryTheory.ihom.coev_naturality

Expand All @@ -133,8 +133,8 @@ set_option quotPrecheck false in
notation A " ⟶[" C "] " B:10 => (@ihom C _ _ A _).obj B

@[reassoc (attr := simp)]
theorem ev_coev : (𝟙 A ⊗ (coev A).app B) ≫ (ev A).app (A ⊗ B) = 𝟙 (A ⊗ B) :=
Adjunction.left_triangle_components (ihom.adjunction A) _
theorem ev_coev : (A ◁ (coev A).app B) ≫ (ev A).app (A ⊗ B) = 𝟙 (A ⊗ B) :=
(ihom.adjunction A).left_triangle_components _
#align category_theory.ihom.ev_coev CategoryTheory.ihom.ev_coev

@[reassoc (attr := simp)]
Expand Down Expand Up @@ -178,7 +178,7 @@ theorem homEquiv_symm_apply_eq (f : Y ⟶ A ⟶[C] X) :
#align category_theory.monoidal_closed.hom_equiv_symm_apply_eq CategoryTheory.MonoidalClosed.homEquiv_symm_apply_eq

@[reassoc]
theorem curry_natural_left (f : X ⟶ X') (g : A ⊗ X' ⟶ Y) : curry ((𝟙 _ ⊗ f) ≫ g) = f ≫ curry g :=
theorem curry_natural_left (f : X ⟶ X') (g : A ⊗ X' ⟶ Y) : curry (_ ◁ f ≫ g) = f ≫ curry g :=
Adjunction.homEquiv_naturality_left _ _ _
#align category_theory.monoidal_closed.curry_natural_left CategoryTheory.MonoidalClosed.curry_natural_left

Expand All @@ -196,7 +196,7 @@ theorem uncurry_natural_right (f : X ⟶ A ⟶[C] Y) (g : Y ⟶ Y') :

@[reassoc]
theorem uncurry_natural_left (f : X ⟶ X') (g : X' ⟶ A ⟶[C] Y) :
uncurry (f ≫ g) = (𝟙 _ ⊗ f) ≫ uncurry g :=
uncurry (f ≫ g) = _ ◁ f ≫ uncurry g :=
Adjunction.homEquiv_naturality_left_symm _ _ _
#align category_theory.monoidal_closed.uncurry_natural_left CategoryTheory.MonoidalClosed.uncurry_natural_left

Expand All @@ -219,7 +219,7 @@ theorem eq_curry_iff (f : A ⊗ Y ⟶ X) (g : Y ⟶ A ⟶[C] X) : g = curry f
#align category_theory.monoidal_closed.eq_curry_iff CategoryTheory.MonoidalClosed.eq_curry_iff

-- I don't think these two should be simp.
theorem uncurry_eq (g : Y ⟶ A ⟶[C] X) : uncurry g = (𝟙 A ⊗ g) ≫ (ihom.ev A).app X :=
theorem uncurry_eq (g : Y ⟶ A ⟶[C] X) : uncurry g = (A ◁ g) ≫ (ihom.ev A).app X :=
Adjunction.homEquiv_counit _
#align category_theory.monoidal_closed.uncurry_eq CategoryTheory.MonoidalClosed.uncurry_eq

Expand All @@ -238,7 +238,7 @@ theorem uncurry_injective : Function.Injective (uncurry : (Y ⟶ A ⟶[C] X) →
variable (A X)

theorem uncurry_id_eq_ev : uncurry (𝟙 (A ⟶[C] X)) = (ihom.ev A).app X := by
rw [uncurry_eq, tensor_id, id_comp]
simp [uncurry_eq]
#align category_theory.monoidal_closed.uncurry_id_eq_ev CategoryTheory.MonoidalClosed.uncurry_id_eq_ev

theorem curry_id_eq_coev : curry (𝟙 _) = (ihom.coev A).app X := by
Expand All @@ -257,19 +257,19 @@ def pre (f : B ⟶ A) : ihom A ⟶ ihom B :=

@[reassoc (attr := simp)]
theorem id_tensor_pre_app_comp_ev (f : B ⟶ A) (X : C) :
(𝟙 B ⊗ (pre f).app X) ≫ (ihom.ev B).app X = (f ⊗ 𝟙 (A ⟶[C] X)) ≫ (ihom.ev A).app X :=
B ◁ (pre f).app X ≫ (ihom.ev B).app X = f ▷ (A ⟶[C] X) ≫ (ihom.ev A).app X :=
transferNatTransSelf_counit _ _ ((tensoringLeft C).map f) X
#align category_theory.monoidal_closed.id_tensor_pre_app_comp_ev CategoryTheory.MonoidalClosed.id_tensor_pre_app_comp_ev

@[simp]
theorem uncurry_pre (f : B ⟶ A) (X : C) :
MonoidalClosed.uncurry ((pre f).app X) = (f ⊗ 𝟙 _) ≫ (ihom.ev A).app X := by
rw [uncurry_eq, id_tensor_pre_app_comp_ev]
MonoidalClosed.uncurry ((pre f).app X) = f ▷ _ ≫ (ihom.ev A).app X := by
simp [uncurry_eq]
#align category_theory.monoidal_closed.uncurry_pre CategoryTheory.MonoidalClosed.uncurry_pre

@[reassoc (attr := simp)]
theorem coev_app_comp_pre_app (f : B ⟶ A) :
(ihom.coev A).app X ≫ (pre f).app (A ⊗ X) = (ihom.coev B).app X ≫ (ihom B).map (f ⊗ 𝟙 _) :=
(ihom.coev A).app X ≫ (pre f).app (A ⊗ X) = (ihom.coev B).app X ≫ (ihom B).map (f _) :=
unit_transferNatTransSelf _ _ ((tensoringLeft C).map f) X
#align category_theory.monoidal_closed.coev_app_comp_pre_app CategoryTheory.MonoidalClosed.coev_app_comp_pre_app

Expand Down Expand Up @@ -326,7 +326,7 @@ theorem ofEquiv_curry_def (F : MonoidalFunctor C D) [IsEquivalence F.toFunctor]
(F.1.1.adjunction.homEquiv Y ((ihom _).obj _))
(MonoidalClosed.curry
(F.1.1.inv.adjunction.homEquiv (F.1.1.obj X ⊗ F.1.1.obj Y) Z
((F.commTensorLeft X).compInvIso.hom.app Y ≫ f))) :=
(((F.commTensorLeft X).compInvIso).hom.app Y ≫ f))) :=
rfl
#align category_theory.monoidal_closed.of_equiv_curry_def CategoryTheory.MonoidalClosed.ofEquiv_curry_def

Expand All @@ -339,7 +339,7 @@ theorem ofEquiv_uncurry_def (F : MonoidalFunctor C D) [IsEquivalence F.toFunctor
[MonoidalClosed D] {X Y Z : C}
(f : Y ⟶ (@ihom _ _ _ X <| (MonoidalClosed.ofEquiv F).1 X).obj Z) :
@MonoidalClosed.uncurry _ _ _ _ _ _ ((MonoidalClosed.ofEquiv F).1 _) f =
(F.commTensorLeft X).compInvIso.inv.app Y ≫
((F.commTensorLeft X).compInvIso).inv.app Y ≫
(F.1.1.inv.adjunction.homEquiv (F.1.1.obj X ⊗ F.1.1.obj Y) Z).symm
(MonoidalClosed.uncurry
((F.1.1.adjunction.homEquiv Y ((ihom (F.1.1.obj X)).obj (F.1.1.obj Z))).symm f)) :=
Expand Down
Loading

0 comments on commit 13e1315

Please sign in to comment.