Skip to content

Commit

Permalink
refactor(CategoryTheory/Monoidal/Rigid): use monoidalComp in the proo…
Browse files Browse the repository at this point in the history
…fs (#10326)

Similar to #10078
  • Loading branch information
yuma-mizuno authored and Louddy committed Apr 15, 2024
1 parent 2111a3b commit 106c38b
Show file tree
Hide file tree
Showing 5 changed files with 238 additions and 264 deletions.
6 changes: 6 additions & 0 deletions Mathlib/CategoryTheory/Monoidal/Functor.lean
Original file line number Diff line number Diff line change
Expand Up @@ -308,10 +308,16 @@ theorem map_tensor {X Y X' Y' : C} (f : X ⟶ Y) (g : X' ⟶ Y') :
theorem map_whiskerLeft (X : C) {Y Z : C} (f : Y ⟶ Z) :
F.map (𝟙 X ⊗ f) = inv (F.μ X Y) ≫ (𝟙 (F.obj X) ⊗ F.map f) ≫ F.μ X Z := by simp

theorem map_whiskerLeft' (X : C) {Y Z : C} (f : Y ⟶ Z) :
F.map (X ◁ f) = inv (F.μ X Y) ≫ F.obj X ◁ F.map f ≫ F.μ X Z := by simp

-- Note: `f ⊗ 𝟙 Z` will be replaced by `f ▷ Z` in #6307.
theorem map_whiskerRight {X Y : C} (f : X ⟶ Y) (Z : C) :
F.map (f ⊗ 𝟙 Z) = inv (F.μ X Z) ≫ (F.map f ⊗ 𝟙 (F.obj Z)) ≫ F.μ Y Z := by simp

theorem map_whiskerRight' {X Y : C} (f : X ⟶ Y) (Z : C) :
F.map (f ▷ Z) = inv (F.μ X Z) ≫ F.map f ▷ F.obj Z ≫ F.μ Y Z := by simp

theorem map_leftUnitor (X : C) :
F.map (λ_ X).hom = inv (F.μ (𝟙_ C) X) ≫ (inv F.ε ⊗ 𝟙 (F.obj X)) ≫ (λ_ (F.obj X)).hom := by
simp only [LaxMonoidalFunctor.left_unitality]
Expand Down
Loading

0 comments on commit 106c38b

Please sign in to comment.