Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fixed a few typos in the documentation #365

Merged
merged 11 commits into from
Oct 4, 2021
18 changes: 4 additions & 14 deletions docs/src/manual/load-model.md
Original file line number Diff line number Diff line change
Expand Up @@ -40,16 +40,11 @@ $$I^\text{bus}_\mathcal{P} = I^\text{d},\;\;\;I^\text{bus}_n=-1^TI^d$$

We now develop the expression for the power drawn at the bus for the phase conductors

$$
S^\text{bus}_\mathcal{P} = (U^d+U^\text{bus}_n)\odot(I^d)^*
= S^d+U^\text{bus}_n S^d\oslash U^d.
$$
$$S^\text{bus}_\mathcal{P} = (U^d+U^\text{bus}_n)\odot(I^d)^* = S^d+U^\text{bus}_n S^d\oslash U^d.$$

From conservation of power or simply the formulas above,

$$
S^\text{bus}_n = -1^TS^\text{bus}_\mathcal{P}+1^TS^d.
$$
$$S^\text{bus}_n = -1^TS^\text{bus}_\mathcal{P}+1^TS^d.$$

### Grounded neutral

Expand All @@ -71,13 +66,8 @@ $$U^d = M^\Delta U^\text{bus},\;\;\; I^\text{bus} = \left(M^\Delta\right)^T I^d.

We can related $S^\text{bus}$ to $U^\text{bus}$ and $I^d$

$$
S^\text{bus} = U^\text{bus}\odot \left(I^\text{bus}\right)^*
= U^\text{bus}\odot \left(M^\Delta\right)^T\left(I^d\right)^*,
$$
$$S^\text{bus} = U^\text{bus}\odot \left(I^\text{bus}\right)^* = U^\text{bus}\odot \left(M^\Delta\right)^T\left(I^d\right)^*,$$

and using the fact that $\left(I^d\right)^*=S^d \oslash U^d$, and the expression above for $U^d$,

$$
S^\text{bus} = U^\text{bus}\left(M^\Delta\right)^T S^d \oslash M^\Delta U^\text{bus}
$$
$$S^\text{bus} = U^\text{bus}\left(M^\Delta\right)^T S^d \oslash M^\Delta U^\text{bus}$$
2 changes: 1 addition & 1 deletion docs/src/manual/specifications.md
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
# Problem Specifications

In addition to the standard power flow [`solve_mc_pf`](@ref solve_mc_pf), and optimal power flow [`solve_mc_opf`](@ref solve_mc_opf), there are several notable problem specifications included in PowerModelsDistribution
In addition to the standard power flow [`solve_mc_pf`](@ref solve_mc_pf), and optimal power flow [`solve_mc_opf`](@ref solve_mc_opf), there are several notable problem specifications included in PowerModelsDistribution.

## Optimal Power Flow (OPF) with On-Load Tap Changers (OLTC)

Expand Down